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1) Internal forces — summary
2) 3D beams






Rotation of local CS:

Planar curved beam
- geometry
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Planar curved beam
- iInternal forces
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Internal forces (equilibrium)
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Beam systems

System of straight, inclined, cranked and curved beams

Calculation of internal forces

a) all internal and external reactions are determined
b) local coordinate system is defined in each beam

c) calculation of internal forces of individual beams



Symmetric structures
- symmetric loads
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Compare (*) and (**)
N,=N,
M,=M,
V,=—V,

J

. distributions of M and N are
symmetric

. distribution of V'1s
antisymmetric




Symmetric structures

- antisymmetric loads
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Compare (*) and (**)
N, = _Nj

M,=-M,
V=V,

. distributions of M and N are
antisymmetric
. distribution of V' 1s symmetric







Result check

» equilibrium conditions / equivalency of forces in the end points

Reactions Internal forces




Result check

internal forces in bonds/elements, eg.:

- non-loaded hinge (M,,,=0)=>M =0

- non-loaded truss element

= V=M=0

- non-loaded free end

equilibrium conditions in joints

Q




Result check

= differential relations between internal forces and the load
... relations between load functions and internal forces

... position of extremes

» determination of internal forces by means of independent method

- calculation from the “other end”

- deformation method, etc.

" symmetry and antisymmetry



« we need to know the external forces (load and reactions)

Internal forces
- summary

- all necessary reactions are evaluated

- 1nternal forces are defined with respect to the centerline, all

forces acting on the structure are transformed to the centerline
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Internal forces

* centerline 1s Cf/(l/l/ﬂ b c  d .
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* internal forces are defined as functions with respect to the local
coordinate s for each interval: N(s), V(s), M(s)

- equilibrium/equivalency approach or

- solution of differential equations with boundary conditions



Internal forces

- summary
 determine the positions of extreme values 1n each interval
- solution of equations: dN _, 4V _, dM _
ds ©ds © s

- boundary values of each interval

 plotting of internal forces lMMK_.X
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Internal forces
- example

Draw the distributions of internal forces and their extreme values.
Write the internal forces as a function of position coordinate for the

interval (b, ¢). £ =12 kN/m

4 m

6 m




3D beams

* Centerline: line segment
* Load and reactions:
» Force vectors are not in the same plane
» Force vectors are not in the centerline plane




3D beams

* Coordinate systems
= global x,-y,-z,
" Jocal x-y-z (orientation and direction of internal forces)
" Jocal s (internal forces as a function of cross-section position)

= Origin of x-y-z is in the center of gravity of a given M
cross-section
» Direction of x-axis: tangent to the centerline
» Directions of y and z axes:
symmetric cross-sections — axes of symmetry
general cross-section — principal axes of inertia



3D beams — load transformation

Point load

Model: Transformatio_n of force to the
center of gravity of the
corresponding cross-section




3D beams — load transformation

Point load - general approach

NRRANY

Model:

... Transformation of force to the
center of gravity of the
corresponding cross-section




3D beams — load transformation

Distributed load acting perpendicularly to the centerline

Model:




3D beams — load transformation

Distributed load acting perpendicularly to the centerline

Model:

~!



3D beams — load transformation

Distributed load acting on the line parallel to the centerline

dM
dF. = f. -ds

Beam Transformation Additional distributed

segment ds of dF, moment load m,
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f "
\_ /




3D beams — load transformation

Distributed load acting on the line parallel to the centerline
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3D beams — load transformation

Distributed load acting on the line parallel to the centerline

dF = [ -ds
dM =7 x ]7 -ds ~
E{‘
i 5
dF = f - ds m=u T
Beam Transformation Additional distributed
segment ds of dF moment load m
4 ] )
Model: f

S




3D beams — load transformation

Distributed load acting on the line perpendicular to the centerline

... Load acting on the line ... Distributed load ... Transformation

which is in the plane of substituted by its of this force to

cross-section resultant the center of
gravity of the

cross-section



3D beams — internal forces

Orientation of positive internal forces

| Negative section
(outer-pointing normal
coincides with negative
direction of x axis)

Positive section z
(outer-pointing normal coincides
with positive direction of x axis)




 beams — generalization of relations
between load and internal forces




3D beams — generalization of relations
between load and internal forces

Equilibrium of beam element
M x: —=N+(N+dN)+ fds=0
v y: -V, +(Vy+dVy)+fyds:O

V oz =V +(V.+dV,)+ f.ds =0

M ox: =T+(T+dT)+mds=0
ds ds
¥y =M+ (M, +dM )+ mds- V.= (V.+dV.)=- =0

v oz -M_+(M, +dM, )+mdS+Vd7+(V dV)C;S 0



3D beams — generalization of relations
between load and internal forces
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3D beams — generalization of relations
between load and internal forces
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3D beams — plotting of internal forces

Normal force
N <0
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- the orientation and the plane of the sketch 1s not prescribed



3D beams — plotting of internal forces

Shear forces
Vy>0 Vy<0
Y Z% X % %
V. >0 V. <0
Y oz X

- The orientation is not prescribed
- The plane 1s prescribed (plane in which the forces act)



3D beams — plotting of internal forces

Torque
T<O0
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- the orientation and the plane of the sketch 1s not prescribed



3D beams — plotting of internal forces

Bending moments

A
5 o

- the orientation and the plane of the sketch 1s prescribed
(on the side where the tension 1s)



3D beams — example

Determine and plot internal forces along the beam




3D beams — example

Model (transformation of the load):

4 0.05 kNm

0.1 kNm

b\“\o.lsm kNr
1 kKN

<
44—




3D beams — example

Equilibrium

N(s)—1=0 N(s)=1 2 kN b 1kN —
Vi(s)—-2=0 V.(s)=2

V.(s)-3=0 V.(s)=3

T(s)+0.35=0 _, T(s)=-0.35 [KN, kNm]
M ,(s)+0.1+3(2—5) = 0 M (s)=—6.1+3s

M, (s)+0.05-2(2-5)=0 M _(s)=3.95-2s



3D beams — example

Distributions: K
i - b
%
a T(kNm)
035



3D beams — example

Determine and plot internal forces along the beam

12 KN/m




3D beams — example

Model (transformation of load):

12 kN/m

M,=0.45-0.05
=0.0225 kNm



3D beams — example

Equivalency N(s)=0 [kN]
L
| L
i3 V (s)=-F =-0.45 [kN
2}7'?%1 (s)=—F,=-0.45 [kN]
AT VN,N | TORAONGD
Ny T /f(s): 12 —4s : 2
) (12-4s)(3-5)
- 2

1c ~ =25"—12s+18 [kN]
S g v

(1- 2-0.45)(3- :
T(s):—m(s)z(] )y, -2 ;)( $) 1 0.0225=-0.25 +1.25- 17775 [iNim]

M (s) = f(S)-z(l—S).(l;S):_(12—4S2(3—S) :253—18323+54s—54 (]

M, (s)=—F,-(I-s)=-0.45-(3-5)=-1.35+0.45s [kNm]




3D beams — example

Distributions:

N [kN]




3D cranked beams

 centerline: polyline line (2D or 3D)

 |load and reactions: force vectors do not act in the plane
of the centreline

« EQ.:




3D cranked beams - model

N

Transformation of load

« same as for straight beams



3D cranked beams — internal forces

Division of beam into intervals:
- change of load
- point force or moment
- support, connection, joint
- end of beam



3D cranked beams

* Coordinate systems
= global x,-y,-z,
" Jocal x-y-z (orientation and direction of internal forces)
" Jocal s (internal forces as a function of cross-section position)

 Plotting of distributions of internal forces: same as for straight beams



3D cranked beams — example

Determine and plot internal forces along the beam




3D cranked beams — example

Model:

y a
A/J\‘xg b .x/ 4 0.05 kNm
yg Z

/J\~ 0.1 kNm
X
Y /

1 kN




3D cranked beams — example

Interval (b,c) ... see example in previous section

N(s)=1 kN /l\ i

V,(s)=2 kN
V.(s)=3 kN
I'(s)=—0.35 kNm

M (s)=-6.1+3s kNm
M _ (s)=3.95-2s kNm



3D cranked beams — example

Interval (a,b)

Equilibrium
N(s)—2=0
V.(s)+1=0
V.(s)-3=0
I'(s)+3-2+0.1=0
M, (s)—0.35+3(0.5-5)=0
M_(s)+0.05-2-2+1(0.5-5)=0

0.35 kNm

N(s)=2
V;_(S)I—l

V.(s)=3 [kN, kNm]
T'(s)=-6.1

M, (s)=-115+3s
M _(s)=3.45+5






