Structural mechanics 2

Summer semester 2023/24

Structural mechanics 2

Lecture no. 7, April 2, 2024

- 1) Internal forces summary
- 2) 3D beams

Review – lecture No. 5

Planar curved beam - geometry

Rotation of local CS:

Centerline is defined by the function:

$$z_g = g(x_g)$$
, Eg. $z_g = 3x_g^2$

$$\frac{dz_g}{dx_g} = g' \Rightarrow dz_g = g' dx_g$$

$$ds = \sqrt{dx_g^2 + dz_g^2} = \sqrt{1 + (g')^2} dx_g$$

$$\cos(\varphi) = \frac{dx_g}{ds} \implies \cos \varphi = \frac{1}{\sqrt{1 + (g')^2}}$$
$$\sin(\varphi) = \frac{dz_g}{ds} \implies \sin \varphi = \frac{g'}{\sqrt{1 + (g')^2}}$$

Planar curved beam - internal forces

Internal forces (equilibrium)

$$N + X_0 \cos \varphi + Z_0 \sin \varphi + R_{xg} \cos \varphi + R_{zg} \sin \varphi = 0 \Rightarrow N(x_g) = \dots$$

$$V - X_0 \sin \varphi + Z_0 \cos \varphi - R_{xg} \sin \varphi + R_{zg} \cos \varphi = 0 \Longrightarrow V(x_g) = \dots$$

$$M - X_0 \cdot g\left(x_g\right) + Z_0 \cdot x_g - R_{xg}\left(g\left(x_g\right) - Z_{gR}\right) + R_{zg}\left(x_g - x_{gR}\right) + S_0 = 0 \Longrightarrow M\left(x_g\right) = \dots$$

$$\left(\cos\varphi = \frac{1}{\sqrt{1 + (g')^2}} \quad \sin\varphi = \frac{g'}{\sqrt{1 + (g')^2}}\right)$$

Beam systems

System of straight, inclined, cranked and curved beams

Calculation of internal forces

- a) all internal and external reactions are determined
- b) local coordinate system is defined in each beam
- c) calculation of internal forces of individual beams

Symmetric structures - symmetric loads

Compare (*) and (**) $N_i = N_j$

 $M_i = M_j$

 $V_i = -V_j$

- distributions of M and N are symmetric
- distribution of V is antisymmetric

Symmetric structures

- antisymmetric loads

Compare (*) and (**)

$$\begin{split} \boldsymbol{N}_i &= -\boldsymbol{N}_j \\ \boldsymbol{M}_i &= -\boldsymbol{M}_j \\ \boldsymbol{V}_i &= \boldsymbol{V}_j \end{split}$$

- distributions of M and N are antisymmetric
- distribution of V is symmetric

Lecture No. 6

Result check

equilibrium conditions / equivalency of forces in the end points

Reactions

Internal forces

$$A_{X} \xrightarrow{S_{A}} B_{X}$$

$$N_{A} \xrightarrow{N_{A}} N_{B}$$

$$N_{A} \xrightarrow{N_{A}} V_{A}$$

$$N_{B} \xrightarrow{N_{B}} N_{B}$$

$$N_A = -A_X$$
 , $V_A = -A_Z$, $M_A = -S_A$

$$N_B = B_X$$
 , $V_B = B_Z$, $M_B = S_B$

Result check

• internal forces in bonds/elements, eg.:

- non-loaded hinge
$$(M_{ext} = 0) \Rightarrow M = 0$$

- non-loaded truss element

$$=> V = M = 0$$

- non-loaded free end

$$=> N = V = M = 0$$

equilibrium conditions in joints

Result check

- differential relations between internal forces and the load
 - ... relations between load functions and internal forces
 - ... position of extremes

- determination of internal forces by means of independent method
 - calculation from the "other end"
 - deformation method, etc.

symmetry and antisymmetry

Internal forces - summary

- we need to know the external forces (load and reactions)
 - all necessary reactions are evaluated
 - internal forces are defined with respect to the centerline, all forces acting on the structure are transformed to the centerline

Internal forces

- summary

 centerline is divided into intervals

- internal forces are defined as <u>functions</u> with respect to the local <u>coordinate</u> s for each interval: N(s), V(s), M(s)
 - equilibrium/equivalency approach or
 - solution of differential equations with boundary conditions

Internal forces - summary

determine the positions of extreme values in each interval

- solution of equations:
$$\frac{dN}{ds} = 0$$
, $\frac{dV}{ds} = 0$, $\frac{dM}{ds} = 0$

- boundary values of each interval

• plotting of internal forces

check of results

Internal forces - example

Draw the distributions of internal forces and their extreme values. Write the internal forces as a function of position coordinate for the interval (b, c).

3D beams

- Centerline: line segment
- Load and reactions:
 - Force vectors are not in the same plane
 - Force vectors are not in the centerline plane
- Eg.:

3D beams

- Coordinate systems
 - global x_g - y_g - z_g
 - local x-y-z (orientation and direction of internal forces)
 - local s (internal forces as a function of cross-section position)

Directions of y and z axes:
 symmetric cross-sections – axes of symmetry
 general cross-section – principal axes of inertia

Point load

Point load - general approach

Model:

... Transformation of force to the center of gravity of the corresponding cross-section

Distributed load acting perpendicularly to the centerline

Distributed load acting perpendicularly to the centerline

Distributed load acting on the line parallel to the centerline

Transformation of dF_z

Additional distributed moment load m_x

Distributed load acting on the line parallel to the centerline

Beam segment ds

of dF_x

Transformation Additional distributed moment loads $p_2 \cdot f_x$ and $p_1 \cdot f_x$

Distributed load acting on the line parallel to the centerline

Transformation of $d\vec{F}$

Additional distributed moment load \vec{m}

Distributed load acting on the line perpendicular to the centerline

... Load acting on the line which is in the plane of cross-section

... Distributed load substituted by its resultant

... Transformation of this force to the center of gravity of the cross-section

3D beams - internal forces

Orientation of positive internal forces

(outer-pointing normal coincides with positive direction of x axis)

Negative section

 $\vec{F}_R = -\vec{F}_L$ $\vec{M}_R = -\vec{M}_L$ Negative section

(outer-pointing normal coincides with negative direction of x axis)

3D beams – generalization of relations between load and internal forces

3D beams – generalization of relations between load and internal forces

Equilibrium of beam element

$$\Rightarrow x: -N+(N+dN)+f_x ds=0$$

$$y: -V_y + (V_y + dV_y) + f_y ds = 0$$

$$\downarrow \quad z: -V_z + (V_z + dV_z) + f_z ds = 0$$

$$x: -T + (T + dT) + m_x ds = 0$$

$$y: -M_y + (M_y + dM_y) + m_y ds - V_z \frac{ds}{2} - (V_z + dV_z) \frac{ds}{2} = 0$$

$$z: -M_z + (M_z + dM_z) + m_z ds + V_y \frac{ds}{2} + (V_y + dV_y) \frac{ds}{2} = 0$$

3D beams – generalization of relations between load and internal forces

$$x: -N + (N + dN) + f_x ds = 0$$

$$\frac{dN}{ds} = -f_x$$

$$x: -N + (N + dN) + f_x ds = 0$$

$$y: -V_y + (V_y + dV_y) + f_y ds = 0$$

$$\downarrow z: -V_z + (V_z + dV_z) + f_z ds = 0$$

$$\downarrow x: -T + (T + dT) + m_x ds = 0$$

$$\frac{dN}{ds} = -f_x$$

$$\frac{dV_y}{ds} = -f_z$$

$$\frac{dV_{y}}{ds} = -f_{y}$$

$$z: -V_z + (V_z + dV_z) + f_z ds = 0$$

$$\frac{dV_z}{ds} = -f_z$$

$$x: -T + (T + dT) + m_x ds = 0$$

$$\frac{dT}{ds} = -m_x$$

3D beams – generalization of relations between load and internal forces

$$y: -M_{y} + (M_{y} + dM_{y}) + m_{y}ds - V_{z}\frac{ds}{2} - (V_{z} + dV_{z})\frac{ds}{2} = 0$$

$$\to 0$$

$$dM_{y} + m_{y}ds - V_{z}ds - dV_{z}\frac{ds}{2} = 0$$

$$\frac{dM_{y}}{ds} = V_{z} - m_{y}$$

$$z: -M_z + (M_z + dM_z) + m_z ds + V_y \frac{ds}{2} + (V_y + dV_y) \frac{ds}{2} = 0$$

$$dM_z + m_z ds + V_y ds + dV_y \frac{ds}{2} = 0$$

$$\frac{dM_z}{ds} = -V_y - m_z$$

$$\frac{dM_z}{ds} = -V_y - m_z$$

Normal force

- the orientation and the plane of the sketch is not prescribed

Shear forces

- The orientation is not prescribed
- The plane is prescribed (plane in which the forces act)

- the orientation and the plane of the sketch is not prescribed

- the orientation and the plane of the sketch is prescribed (on the side where the tension is)

3D beams – example

Determine and plot internal forces along the beam

Model (transformation of the load):

Equilibrium

$$N(s)-1=0$$

$$V_{v}(s)-2=0$$

$$V_{z}(s) - 3 = 0$$

$$T(s) + 0.35 = 0$$

$$M_v(s) + 0.1 + 3(2 - s) = 0$$

$$M_{z}(s) + 0.05 - 2(2-s) = 0$$

$$N(s) = 1$$

$$V_{v}(s) = 2$$

$$V_{z}(s) = 3$$

$$T(s) = -0.35$$

$$M_{v}(s) = -6.1 + 3s$$

$$M_{z}(s) = 3.95 - 2s$$

[kN, kNm]

Determine and plot internal forces along the beam

Model (transformation of load):

 $f(s)=12-\frac{12}{3}s=12-4s [kN/m]$

m(s)

 $m(s) = f \cdot 0.1 = 1.2 - 0.4s [kNm/m]$

 M_1

Equivalency

$$N(s) = 0 [kN]$$

$$V_{y}(s) = -F_{I} = -0.45 [kN]$$

$$V_{z}(s) = \frac{f(s) \cdot (l-s)}{2}$$

$$= \frac{(12-4s)(3-s)}{2}$$

$$= 2s^{2} - 12s + 18 [kN]$$

$$T(s) = -\frac{m(s) \cdot (l-s)}{2} + M_1 = -\frac{(1.2 - 0.4s)(3 - s)}{2} + 0.0225 = -0.2s^2 + 1.2s - 1.7775 \quad [kNm]$$

$$M_y(s) = -\frac{f(s) \cdot (l-s)}{2} \cdot \frac{(l-s)}{3} = -\frac{(12 - 4s)(3 - s)^2}{6} = \frac{2s^3 - 18s^2 + 54s - 54}{3} \quad [kNm]$$

$$M_z(s) = -F_1 \cdot (l-s) = -0.45 \cdot (3 - s) = -1.35 + 0.45s \quad [kNm]$$

Distributions:

3D cranked beams

- centerline: polyline line (2D or 3D)
- load and reactions: force vectors do not act in the plane of the centreline
- Eg.:

3D cranked beams - model

Transformation of load

same as for straight beams

3D cranked beams – internal forces

Division of beam into intervals:

- change of load
- point force or moment
- support, connection, joint
- end of beam

3D cranked beams

- Coordinate systems
 - global x_g - y_g - z_g
 - local x-y-z (orientation and direction of internal forces)
 - local s (internal forces as a function of cross-section position)

Plotting of distributions of internal forces: same as for straight beams

Determine and plot internal forces along the beam

Model:

Interval (b,c) ... see example in previous section

$$N(s) = 1$$
 kN
 $V_y(s) = 2$ kN
 $V_z(s) = 3$ kN
 $T(s) = -0.35$ kNm
 $M_y(s) = -6.1 + 3s$ kNm
 $M_z(s) = 3.95 - 2s$ kNm

Equilibrium

$$N(s) - 2 = 0$$

$$V_{v}(s)+1=0$$

$$V_{z}(s)-3=0$$

$$T(s) + 3 \cdot 2 + 0.1 = 0$$

$$M_v(s) - 0.35 + 3(0.5 - s) = 0$$

$$M_{z}(s) + 0.05 - 2 \cdot 2 + 1(0.5 - s) = 0$$

$$N(s) = 2$$

$$V_{y}(s) = -1$$

$$V_z(s) = 3$$

$$\Rightarrow T(s) = -6.1$$

$$M_{v}(s) = -1.15 + 3s$$

$$M_{z}(s) = 3.45 + s$$

[kN, kNm]

The End