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1 Theory

In this section, we present the theory to FFT-based homogenization, analytical homogenization, and
visco-elastic homogenization.

we use following notation: a = a(x) : Rd → R, a =
(

aαβ(x)
)d

α,β=1
: Rd → Rd andA =

(

Aαβµν(x)
)d

α,β,µ,ν=1
:Rd → Rd×d denote scalar, second-order and fourth-order tensor quantities with Greek subscripts used

when referring to the corresponding components, e.g. Aαβ . A multi-index notation is employed, in whichRN with N = (N1, . . . , Nd) represents RN1×···×Nd . The objects denoted with a capital letter in a serif
font and bold style (e.g. A ∈ Rd×d×d×d×N×N ) are called matrices, further superscript and subscript

indices are used to refer to components Akm

αβµν , i.e. A = [Akm

αβµν ]
k,l∈Zd

N

α,β,µ,ν=1,...,d with Zd
N

defined asZd
N =

{

k ∈ Zd : −Nα

2
< kα ≤ Nα

2
, α = 1, . . . , d

}

. (1.1) {eq:def˙ZN}

Moreover, we denote by

Aαβµν =
[

A
km

αβµν

]k,m∈Zd

N ∈ RN×N , for α, β, µ, ν = 1, . . . , d,

A
km =

[

A
km

αβµν

]

α,β=1,...,d
∈ Rd×d×d×d, for k,m ∈ Zd

N ,

the submatrices of A. With the same notation, the objects denoted with a small letter (e.g. e ∈ Rd×d×N)
are called vectors and the product of matrix by vector multiplication Ae ∈ Rd×d×N is defined as

Ae =





d
∑

µ,ν=1

∑

m∈Zd

N

A
km

αβµνe
m

µν





k∈Zd

N

α,β=1,...,d

. (1.2) {eq:MB˙multiplication}

The binary operator ⊙ denotes the elementwise multiplication, i.e. for l,N ∈ Rd

l⊙N = (lαNα)
d
α=1 ∈ Rd.

Since the second-order tensors ε and σ are symmetric, the engineering notation is used. We use a
Mandel notation where in the two-dimensional case of plain strain, we can express strain and stress as

ε̃ = (ε11, ε22,
√
2ε12)

T (1.3a) {eq:stress˙strain˙Mandel}

σ̃ = (σ11, σ22,
√
2σ12)

T . (1.3b)

Analogically, in order to express material law in Mandel notation as σ̃ = L̃ε̃, the stiffness matrix L̃ can
be expressed as

L̃ =





L1111 L1122

√
2L1112

L2211 L2222

√
2L2212√

2L1211

√
2L1222 2L1212



 (1.4) {eq:stiffness˙Mandel}

1.1 Linear elasticity homogenization using FFT

A majority of computatinal homogenization techniques rely on the solution to the unite cell problem,
which concerns the determination of local fields in a representative sample of a heterogeneous material
under periodic boundary conditions. The behavior of any heterogeneous materials consisting of peri-
odically repeating unit cell (occupying domain Ω =

∏d
α=1(−Yα.Yα) ⊂ Rd, where Yα is the axial size

and d denotes the space dimension) can be described with differential equations with periodic boundary
conditions and prescribed macroscopic load ε0 as
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divσ(x) = 0, x ∈ Y (1.5a)

σ(x) = L(x)ε(x), x ∈ Y (1.5b) {eq:linear˙elastic˙material˙la

〈ε〉 := 1

|Y|d

∫

Y

ε(x) dx = ε0 (1.5c)

where σ denotes second order stress tensor, ε second order strain tensor, L the fourth order tensor of
elastic stiffness, and |·|d denotes d-dimenasional Lebesque measure. The effective (homogenized) material
tensor Leff is such a tensor satisfying

〈σ〉 = Leff : 〈ε〉 (1.6) {eq:hom˙stress˙strain˙rel}

for arbitrary macroscopic load ε0 = 〈ε〉. In the two-dimensional case, it is calculated as a individual
unit loads e0 are prescribed, i.e. step by step is described ε011 = 1, ε22 = 1 and ε12 = 1. In fact, each
unit load determines one column of the effective (homogenized) stiffness Leff meaning in the engineering
notation, see Mandel notation at the end of the section.

Thus the problem of finding effective material tensor Leff is composed of finding corresponding strain
field ε and associated stress field σ for known elastic properties L and loading ε0 using differential
equation Eq. (1.5).

We formulate the initial problem Eq. (1.5) as a weak formulation: Find ε̄ = ε− ε0 ∈ V such that

(

Lε̄,v
)

L2

Y

= −
(

Lε0,v
)

L2

Y

(1.7)

where

V = {ε = (εαβ)α,β=1,...,d; εαβ ∈ L2
Y

such that there exists vector field u ∈ H1
Y

satisfying
∇u+ (∇u)T

2
= ε},

L2
Y

denotes the measurable functions (vector valued), square integrable factorized with equivalence
unifying two functions equaling one another almost everywhere.

The weak formulation is numerically solved using Galerkin approximation with numerical integration
and trigonometric polynomials

ϕN ,m(x) =
1

∏d
α=1 Nα

∑

k∈Zd

N

ϕk(x)ω
−mk

N
(1.8) {eq:basis˙Orig}

taken as a basis function where

ϕk(x) = exp

(

πi

d
∑

α=1

kαxα

Yα

)

, m,k ∈ Zd
N
, (1.9)

ωkm

N
= exp

(

2πi

d
∑

α=1

kαmα

Nα

)

, m,k ∈ Zd
N
, (1.10)Zd

N =

{

k ∈ Zd : −Nα

2
< kα ≤ Nα

2
, α = 1, . . . , d

}

. (1.11)

The basis functions ϕN ,m(x) satisfy the dirac delta property, i.e. ϕN ,m(xk) = δmk, at nodal points

xk :=

d
∑

α=1

2Yαkα

Nα
ǫα =

(

2Y1k1

N1
,
2Y2k2

N2
, . . . ,

2Ydkd

Nd

)

∈ Y ⊂ Rd. (1.12)
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Since we store the nodal values of functions occuring in weak formulation

e =
(

εαβ(x
k)
)k∈Zd

N

α,β=1,...,d
, (1.13) {eq:strain˙grid}

L =
(

δkmLαβµν(x
k)
)k,m∈Zd

N

α,β,µ,ν=1,...,d
, (1.14)

e
0 =

(

ε0αβ
)k∈Zd

N

α,β=1,...,d
, (1.15) {eq:MBe}

the Galerkin approximation with numerical integration is then equivalent to solution of linear system

PLē = −PLe
0 (1.16) {eq:linear˙system}

where P is a projection on a discrete space corresponding to the space V of admissible strain fields, i.e.
on the space

E =







e ∈ Rd×d×N ;
∑

k∈Zd

N

e
kϕN ,k ∈ V







(1.17)

and the matrix P can be explicitly expressed as

P = F
−1

Γ̂F (1.18)

where matrices F−1,F ∈ Cd×d×d×d×N×N are composed of Discrete Fourier Transform, i.e.

F =
1

∏

α=1,...,d

(

δαµδβνω
−km

N

)k,m∈Zd

N

α,β,µ,ν=1,...,d
F
−1 =

(

δαµδβνω
km

N

)k,m∈Zd

N

α,β,µ,ν=1,...,d
, (1.19)

and matrix Γ̂K,G is derived from a green function expressed in a Fourier space, i.e.

Γ̂K0,G0
=

[

δαµδβν

(

1

2G0
· (δikξjξl + δilξjξk + δjkξiξl + δjlξiξk)

2‖ξ‖22
− 3K0 +G0

G0(3K0 + 4G0)
· ξiξjξkξl‖ξ‖42

)]k,m∈Zd

N

α,β,µ,ν=1,...,d

(1.20)

where ξ =
(

ξα(k)
)

α=1,...,d
, ξα(k) = kα

Yα
for α = 1, . . . , d and k ∈ Zd

N
, and K0, G0 are bulk and shear

modulus of reference stiffness, the parameter of the method.
The assumption occuring through the whole program is that the material is isotropic in each point.

Next, the indentation provides the bulk and shear modulus K(x), G(x) ∈ R,x ∈ Y at nodal points
xk ∈ Y for k ∈ Zd

N
. It determines the matrix L required for the solution of linear system (1.16) as

L(xk) = 3K(xk)ΛV + 2G(xk)ΛD, k ∈ Zd
N

(1.21) {eq:isotropic˙material}

where ΛV ,ΛD ∈ Rd×d×d×d are volumetric and deviatoric projections, i.e.

IS :=

(

δikδjl + δilδjk

2

)

i,j,k,l=1,...,d

, (1.22)

ΛV :=

(

1

d
δijδkl

)

i,j,k,l=1,...,d

, (1.23)

ΛD := IS −Λh. (1.24)

We note that the indentation files contains Young’s modulus E and Poisson’s ration ν rather than bulk
and shear modulus, however they are equivalent with the equations

K =
E

3(1− 2ν)
(1.25) {eq:relation˙KG˙Enu}

G =
E

2(1 + ν)
. (1.26)
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Next, the parameters of reference stiffness K0, G0 ∈ R are chosen as a mean of K and G at the set of
nodal points, i.e.

K0 =
1

cardZd
N

∑

k∈Zd

N

K(xk), (1.27)

G0 =
1

cardZd
N

∑

k∈Zd

N

G(xk). (1.28)

In the implementation, the nodal points, e.g. K(xk) for k ∈ Zd
N
, are stored in a matrices K ∈ RN

defined as

K =
(

K(xk)
)k∈Zd

N . (1.29)

The linear elasticity is generally described in the three-dimensional case, d = 3, but some simplifica-
tions can be done if one variable is omitted leading to two-dimensional case. In our work we assume the
problem of plain strain where ε33 = ε23 = ε32 = ε13 = ε31 = 0. Another simplification having the benefit
in computation is Engineering notation, i.e. Mandel notation stated at the end of previous section, which
employ the symmetry of undergoing tensors L,ε and σ. Hence linear system (1.16) can be alternatively
rewritten as

P̃L̃˜̄e = −P̃L̃ẽ
0 (1.30) {eq:linear˙system˙Mandel}

where ·̃ denotes Mandel notation and matrices P̃, L̃ are from the space R3×3×N×N instead of R2×2×2×2×N×N .
Specifically, the matrix L is block diagonal in the sense that submatrices are zero, Lkm = 0, for k 6= m

and k,m ∈ Z2
N
, and the diagonal can be expressed as

L̃
kk =





K
k + 4

3G
k

K
k − 2

3G
k 0

K
k − 2

3G
k

K
k + 4

3G
k 0

0 0 2Gk



 , k ∈ Z2
N . (1.31) {eq:stiffness}

The linear system is then solved using the conjugate gradient method as shown in [4]. Numerically,
the algorithm is stopped when the number of iterations exceeds the user defined number or the required
tolerance εCG for the 2-norm of residuum is reached, i.e.

‖P̃L̃˜̄e(i) + P̃L̃ẽ
0‖ < εCG (1.32) {eq:tol}

where ˜̄e(i) denotes the i-th conjugate gradient approximation of the solution.

1.2 Visco-elasticity FFT-homogenization

In previous section, we deal with linear elasticity and isotropic material, see Eq. (1.5b) and (1.21). In
this section, we describe homogenization of visco-elastic material. In the whole section, we assume that
the material, that we are concerned with, is visco-elastic in the deviatoric part meaning that the bulk
modulus K(x) is time independent while shear modulus G(x) obeys the viscoelastic properties.

In section 1.2.1, we describe the identification of parameters from the nanoindentation experiment.
We assume that the material points are describable by Kelvin-Voight-Maxwell model (KVM) with a
scheme shown in Fig. 1. Since the viscoelastic parameters are identified, we describe in section 1.2.3 the
homogenization of those parameters. Then we again assume that the behaviour at the macroscopic level
again occurs only in deviatoric part and that it behaves like the KVM model.

1.2.1 Identification of parameters

In this section, we describe the identification of viscoelastic parameters that are very well cover in [2].
The idea is to link the indentation force vs. indentation depth to viscoelastic properties, in our case to
parameters occuring in KVM model.

5
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Figure 1: Kelvin-Voight-Maxwell model

The indentation experiment is prescribed with linear loading, constant holding and linear unloading
indentation force. The example of such experiment for particular point is shown in Fig. 2 where the
begin of loading phase t1, holding phase t2 and unloading phase t3 are identified. Then

tL = t2 − t1 (1.33)

tH = t3 − t2 (1.34)

refers to the duration of loading and holding phase resp.
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Approximation of indentation force
Begin of loading phase
Begin of holding phase
Begin of unloading phase

Figure 2: Example of indentation force diagram

Next to the indentation force, cf. Fig 2, the indentation depth is obtained as it is shown in Fig. 3(a).
From the initial phase, the Young’s modulus E and Poisson’s ratio ν or bulk or shear moduli K,G0 are
identified, likewise in the case of obtaining parameters for linear elasticity.

Since the shear modulus G0 from KVM model is identified, it is still necessary to obtain viscoelastic
parameters ηM , ηV , and GV . Vandamme and Ulm in [2] shown that the indentation depth in the holding
phase can be expressed as

yH =
5− 4ν0
1− ν20

+
M

GV
− MT2

GV tL exp −t
T2

(

exp tL
T2

− 1
) +

M

ηM
(

t− tL
2

)

− (1− 2ν0)
2

tL(1− ν20 )
(

1
T1

− 1
T3

)

[(

T3

T2
− 1

)

exp
−t

T3

(

exp
tL

T3
− 1

)

+

(

1− T1

T2

)

exp
−t

T1

(

tL

T1
− 1

)]

(1.35)

where M = M(E, ν), T1 = T1(ηM , GV , ηV ), T2 = T2(ηM , GV , ηV ), and T3 = T3(ηM , GV , ηV ) are defined

6
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as

M =
E

1− ν2
, (1.36)

T1 =
6ηMηV

E0(ηM + ηV ) + 3ηMGV + (E2
0(ηM + ηV )2 + 6E0ηMGV (ηM − ηV ) + 9η2MG2

V )
1/2

, (1.37)

T2 =
ηV

GV
, (1.38)

T3 =
6ηMηV

E0(ηM + ηV ) + 3ηMGV − (E2
0(ηM + ηV )2 + 6E0ηMGV (ηM − ηV ) + 9η2MG2

V )
1/2

. (1.39)

Thus, it is now possible to identify the searched parameters (ηM , ηV , and GV ) using least squares. The
red line in Fig. 3(a) and in a more detail in Fig. 3(b) shows the indentation depth during the force holding
phase while the green line corresponds to the best fit of KVM model with the least squares method.
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Figure 3: Example of indentation depth (ID); (a) Development of ID during the whole experiment
(b) Approximation of experimental data with KVM model

1.2.2 Kelvin-Voight-Maxwell viscoelastic model at material point

In this section, we describe the Kelvin-Voight-Maxwell viscoelastic model shown in Fig. 1. We are
interested in a stress σ(t) vs. strain ε(t) relation defined by this model dependent on four parameters,
i.e. G0, ηM , GV , and ηV , as it will be useful in the next sections. The Kelvin-Voight-Maxwell model can
be described by the system of ordinary differential equations

ε(t) = εG(t) + εηM
(t) + εV (t) (1.40a)

2G0εG(t) = σ(t) (1.40b)

2ηM ε̇ηM
(t) = σ(t) (1.40c) {eq:strain˙M}

2GV εV (t) + 2ηV ε̇V (t) = σ(t) (1.40d) {eq:KV}

where ε̇ denotes time derivative of ε, i.e. ε̇(t) = dε
dt (t), εG(t), εηM

(t), and εV (t) are strains of individual
parts of the model.

First, we are interested in the strain response while loaded by stress with linear loading and constant

7
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holding phase

σ(t) =











0, t ≤ 0
σmax

tL
t, 0 < t ≤ tL

σmax, tL < t

. (1.41) {eq:stress˙load}

The analytical solution can be expressed with Volterra type of integral equation

ε(t) =

∫ t

0

J(t− τ)σ̇(τ) dτ (1.42) {eq:Volterra}

where J := J(t) denotes the creep function, explicitly expressed as

2J(t) =
t

ηM
+

1

G0
+

1

GV

[

1− exp−GV t

ηV

]

, (1.43) {eq:creep}

denoting a strain response exhibit by unit stress load. The well known Eq. 1.43 can be found among others
in [2] and can be calculated using Laplace Transform, cf. Matlab

R© routine published in [3]. Expressing
the time derivative in Eq. (1.41) and substituting in Eq. (1.42) leads to the analytical solution in loading
phase

εL(t) =

∫ t

0

J(t− τ)
σmax

tL
dτ, 0 ≤ t ≤ tL (1.44)

and explicitly in holding phase

εH(t) =

∫ tL

0

J(t− τ)
σmax

tL
dτ, tL < t (1.45a)

=
σmax

2







1

G0
+

1

GV
+

t

ηM
− tL

2ηM
−

ηV

(

exp GV tL
ηV

− 1
)

G2
V tL exp GV t

ηV







. (1.45b)

Although the analytical solution (1.42) can always be used, the complicated stress load can lead to
difficulties in expression of the integral, thus we are interested in numerical solution of KVM model. We
solve numerically the differential equations (1.40), rather than the numerical expression of Volterra type
of integral equation (1.42).

The numerical solution of system (1.40) is based on time discretization with time step ∆t > 0, with
time-levels

ti = i∆t, i ∈ Z. (1.46)

Next, εi will denote the calculated strain at time-level ti and define σi := σ(ti). We express the searched
strain in time-level ti as a sum of individual contributions

εi = εiG + εiηM
+ εiV . (1.47) {eq:strain˙at˙time-level}

Simply, the first term can be expressed as

εiG =
σi

2G0
. (1.48)

The second term is based on numerical integration of Eq. (1.40c)

εηM
(t) =

1

2ηM

∫ t

0

σ(t̄) dt̄ =
1

2ηM

∫ t

ti−1

σ(t̄) dt̄+ εηM
(ti−1), (1.49)

8
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hence

εηM
(ti) =

1

2ηM

∫ ti

ti−1

σ(t̄) dt̄+ εηM
(ti−1) (1.50)

εiηM
=

∆t

2ηM
· σ

i + σi−1

2
+ εi−1

ηM
. (1.51) {eq:strain˙etaM}

The last term is based on solution of Eq. (1.40d) that is fully described e.g. in [1]. Since, we approximate

the right-hand side of (1.40d) with constant σi+σi−1

2 , it is possible to find a approximate solution ε̄V

ε̄V (t) =
σi + σi−1

4GV
+ C exp

−GV t

ηV
(1.52)

where the constant C can be determined with a known initial value ε̄V (ti−1) = εi−1
V . Hence

ε̄V (t) = βεi−1
V + (1− β)

σi + σi−1

4GV
, (1.53)

εiV = βεi−1
V + (1− β)

σi + σi−1

4GV
, (1.54) {eq:epV}

where β = exp(−GV ∆t
ηV

).

Finally, substitution into Eq. (1.47) leads to affine relation between strain and stress at material point

εi = aσi + bi (1.55) {eq:viscoelastic˙law}

where

a =
1

2G
+

∆t

4ηM
+

1− β

4GV
, (1.56)

is a constant independent on time levels while

bi =
∆t

4ηM
σi−1 + εi−1

ηM
+ βεi−1

V +
1− β

4GV
σi−1. (1.57)

depends on previous time level ti−1, particularly on stress σi−1 and individual strain contributions εi−1
ηM

and εi−1
V that are necessary to calculate for the next time level according to Eq. (1.54) and (1.51).

1.2.3 Viscoelastic homogenization

The viscoelastic homogenization is based on finding the relation between the mean stress 〈σ(t)〉 and mean
strain 〈ε(t)〉. In our case, assuming the viscoelastic properties occuring in the deviatoric part, we are
mainly concerned with the relation of shear parts, i.e. 〈σ12(t)〉 and 〈ε12(t)〉, that is further approximated
with KVM model. Analogically to the indentation experiment, where the indentation force is prescribed
and indentation depth is measured, we prescribe the shear stress 1 and calculate strain2.

In the section 1.1 about Linear elasticity we discuss the simplification into engineering Mandel’s
notation and we denoted the quantities with tilde operator, cf. Eq. (1.3a) and (1.4). In this section, we
omit the tilde operator to simplify the notation.

1The shear stress σ12(t) is prescribed as in Eq. (1.41) or as is shown in Fig. 4, i.e. with tL and tH being the duration
of loading and holding phase, while the other stress components σ11(t), σ22(t) are hold zeros.

2Although only σ12(t) is nonzero, all of calculated strain components are nonzero. Since we are interested in mean of
both shear stress 〈σ12(t)〉 and strain 〈ε12(t)〉, the other strain components ε11(t) and ε22(t) are neglected.

9
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Figure 4: Example of loading test for obtaining homogenized parameters

First, we amend the viscoelastic material (1.55) to fit for the homogenization purposes. We rewrite
it for particular nodal point xk as

ε
k,i
3 = akσ

k,i
3 + bk,i (1.58)

σ
k,i
3 =

1

ak
ε
k,i
3 − bk,i

ak
(1.59)

= 2Gk

veε
k,i − (Bi

ve)
k

3 (1.60)

where ε
k,i
3 and σ

k,i
3 denotes shear strain and stress components at time level ti and G

k
ve, (Bi

ve)
k
3 are

components of matrices Gve ∈ RN ,Bi
ve ∈ R3×N , explicitly expressed as

Gve =
(

G
k

ve

)k∈Zd

N
G
k

ve =
1

2ak
,k ∈ Zd

N
(1.61) {eq:Gve}

B
i
ve =

(

(Bve)
k

α

)k∈Zd

N

α=1,...,3
(Bi

ve)
k

3 =
bk,i

ak
,k ∈ Zd

N (Bi
ve)

k

α = 0,k ∈ Zd
N , α = 1, 2 (1.62) {eq:Bve}

Next, we define a matrix LK,Gve
as a matrix L̃ in Eq. (1.31) with bulk and shear moduli K and Gve rather

than with G.
Then the material law, in engineering notation, can be expressed as

s
i = L

i
K,Gve

(

ē
i + (e0)i

)

− B
i
ve (1.63)

where e
i =

(

ē
i − (e0)i

)

and s
i denotes strain and stress resp. in Mandel’s notation at nodal points for

time-level ti analogically to Eq. (1.13).
Substitution of material law into the linear system (1.30) leads to

PLK,Gve
ē
i = −PLK,Gve

(e0)i + PB
i
ve (1.64) {eq:linear˙system˙Mandel˙v

where (e0)i ∈ R3×N depends only on macroscopic strain (ε0)i ∈ R3 as in Eq. (1.15) thus later on we will
often replace both quantities.

We repeat that we are interested in the mean stress σ0(t) := 〈σ(t)〉 and mean strain ε0(t) := 〈ε(t)〉
relation while the stress is prescribed as in Fig. 4. Unfortunately the linear system (1.64) is appropriate
for the macroscopic strain prescription that we are interested in to calculate. Thus we split the linear
system into two as we split the right-hand side

PLK,Gve
ē
i
e0

= −PLK,Gve
(e0)i, (1.65) {eq:linear˙system˙A}

PLK,Gve
ē
i
Bve

= PB
i
ve, (1.66) {eq:linear˙system˙B}

10
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where the searched solution e
i can be expressed as a sum of particular solutions ē

i
e0

and ē
i
Bve

, i.e.

e
i = ē

i
e0

+ ē
i
Bve

. Then, the stress si can be split accordingly

s
i = s

i
e0

+ s
i
Bve

(1.67)

where

s
i
e0

= LK,Gve

(

ē
i
e0

+ (e0)i
)

, (1.68a)

s
i
Bve

= LK,Gve

(

ē
i
Bve

− B
i
ve

)

. (1.68b) {eq:MBs˙MBBve}

The quantities si
Bve

and ē
i
Bve

can be calculated from the linear system (1.66). Then we will calculate the

macroscopic strain (e0)i in a way to satisfy the prescribed macroscopic stress σ0(ti). Since

σ0(ti) = 〈si〉 := 1

N1N2

∑

k∈Z2

N

s
k ∈ R3, (1.69)

we express at least the mean of searched quantity s
i
e0

〈si
e0
〉 = 〈si〉 − 〈siBve

〉. (1.70)

Since (LK,Gve
)eff connects the mean stress and mean strain, cf. Eq. (1.6), we can express the mean of

searched strain e
i
e0

= ē
i
e0

+ (e0)i

〈ei
e0
〉 = (LK,Gve

)−1
eff 〈si

e0
〉 (1.71) {eq:counting˙MBe0}

Since 〈ei
e0
〉 = 〈e0〉, we can calculate ē

i
e0

using linear system (1.65) and consequently s
i
e0
. The calculated

stress si = s
i
e0

+ s
i
Bve

than satisfies the required stress loading 〈si〉 = σ0(ti).
However, the linear system (1.65) do not need to be calculated for each macroscopic strain 〈e0〉

but the superposition of solutions can be used as the system is linear. Thus we calculate the solutions
eα = ēα + e

0
α of linear system

PLK,Gve
ē(α) = PLK,Gve

e
0
(α) (1.72)

where e
0
(α) depends on unit loads ε0(α) = (δαβ)α=1,...,3 for α = 1, . . . , 3. Then since the arbitrary

macroscopic strain is prescribed 〈ei
e0
〉 we can express the solution as

e
i
e0

=
∑

α=1,...,d

ē
i
(α)(e

0)i(α) + e
0. (1.73) {eq:MBe˙MBe0˙linear˙combination

Finally, the effective parameters can be calculated. First the effective bulk and shear moduliKeff , Geff
are calculated from the effective stiffness (LK,G)eff obtained as in a linear elasticity and assuming that it
is isotropic matrix, i.e.

Geff =

(

(LK,G)eff
)

33

2
(1.74a)

Keff =

(

(LK,G)eff
)

11
+
(

(LK,G)eff
)

22

2
− 4

3
Geff (1.74b)

where
(

(LK,G)eff
)

αβ
is a component of (LK,G)eff at position αβ, cf. Eq. (1.4) and (1.31). The mean

stress and mean strain relation in the holding phase, i.e. prescribed (σ0(ti))tL≤ti≤tH ,i∈N and calculated
(

〈ei〉
)

tL≤ti≤tH ,i∈N, is used to find, using least square method, the effective viscoelastic parameters (ηM )eff ,

(GV )eff , and (ηV )eff , analogically to identification of parameters stated in Section 1.2.1. For this purpose,
the analytical expression of shear strain in the holding phase (1.45) is used. Fig. 5(a) then shows
macroscopic shear strain as the response to macroscopic shear stress load shown in Fig. 4 and Fig. 5(b)
shows its part in the holding phase with a best fit of KVM model with effective (homogenized) visco-
elastic parameters.

11



08:54, 25/05/2012 1 THEORY

0 2 4 6 8 10 12 14 16
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ac

ro
sc

op
is

 s
tr

ai
n_

12

Loading phase
Holding phase
Discretization points

(a)

4 6 8 10 12 14 16
Time

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

M
ac

ro
sc

op
ic

 s
tr

ai
n_

12

Numerical experiment
Approximation with KVM model
Discretization points

(b)

Figure 5: Numerical test obtained by loading as in Fig. 4; (a) Strain response during the whole experiment
(b) Approximation of KVM model in the holding phase

Require: Material parameters K,G,ηM ,GV ,ηV ∈ RN ; Time step ∆t and number of time steps n =
nL + nH such that the loading phase tL = nL∆t and holding phase tH = nH∆t; Macroscopic shear
stress load σ0(t) ∈ R3 defined with tL and tH with the maximal value at holding phase equal to 1.

1: Calculate Gve as in Eq. (1.61), set stiffness matrix LK,Gve
and projection matrix P

2: Solve the linear system PLK,Gve
ē(α) = −PLK,Gve

e
0
(α) where e

0
(α) corresponds to unit loads (δαβ)β=1,...,3

for α = 1, . . . , d; obtain effective parameters (LK,Gve
)eff ∈ R3×3 and vectors e(α) = ē(α)+e

0
(α) ∈ R3×N

3: Calculate macroscopic strain 〈ei
e0
〉 = (LK,Gve

)−1
eff σ

0(t1) ∈ R3, cf. Eq. (1.71).
4: Calculate strain at time level t1 as e1 =

∑

α=1,...,3 eα〈eie0〉α and stress as s1 = LK,Gve
e
1

5: for i = 2, . . . , n do

6: Calculate B
i
ve as in Eq. (1.62)

7: Find strain e
i
Bve

= ē
i
Bve

−B
i
ve the solution of linear system PLK,Gve

ē
i
Bve

= PB
i
ve, cf. Eq. (1.66).

8: Calculate stress corresponding to e
i
Bve

as si
Bve

= LK,Gve

(

ē
i
Bve

− B
i
ve

)

, cf. Eq. (1.68b)

9: Calculate macroscopic strain for linear system (1.65) as 〈ei
e0
〉 = (LK,Gve

)−1
eff (σ0(ti)−〈si

Bve
〉) ∈ R3,

cf. Eq. 1.71.
10: Find e

i
e0

= ē
i
e0
+ e

0, a solution of linear system (1.65), where e0 = 〈ei
e0
〉 as a linear combination

e
i
e0

=
∑

α=1,...,d ē
i
(α)(e

0)i(α) + e
0, cf. Eq. (1.73).

11: Calculate strain e
i = e

i
e0

+ e
i
Bve

12: Calculate stress si = LK,Gve
e
i + B

i
ve

13: end for

14: Calculate (LK,G)eff as in the case of linear elasticity
15: Calculate effective bulk and shear moduli Keff and Geff from (LK,G)eff using Eq. 1.74.
16: Find effective viscoelastic properties (ηM )eff , (GV )eff , and (ηV )eff as a best fit of KVM model to

relation between calculated mean stress and strain, (σ0(ti))tL≤ti≤tH ,i∈N and
(

〈ei〉
)

tL≤ti≤tH ,i∈N, using
analytical expression (1.45)

Algorithm 1: Visco-elastic homogenization
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2 Manual

2.1 Indentation

This section describes tab Indentation as is shown in Fig. 2. It primarily reads and adjust the data from
files obtained from nanoindentation.

Figure 6: ’Indentation’

2.1.1 Input data from nanoindentation - CSM

This section is operated with a button ’Import’ reading the data from the file stated as ’CSM indentation
file’. It reads the Young’s modulus E, Poisson’s ratio ν and the position of each indenter in PUC that is
used to identify the size of PUC (Y ) and the number of discretization points (N ) in each direction. In
fact the Poisson’s ratio can be obtained in two ways stated in option ’Choose Poisson’s ratio’:

• ’from input file’ - it reads tha values from ’CSM indentation file’,

• ’as’ - it sets the value of Poisson’s ratio to value stated further for all indentation points.

2.1.2 Input data from nanoindentation - Hysitron

This section is operated with a button ’Import’ reading the scaled Young’s modulus3 Ē =
(

Ē
k
)k∈Zd

N ∈ RN

from the file stated as ’Hysitron indentation file’.
The scaled Young’s modulus has to be raculculated into the real one E ∈ RN with the following

formula

E
k =

1− ν2

1
Ēk

− 1−ν2

i
.

Ei

, k ∈ Zd
N (2.1)

3The components of Ē denotes the Young’s modulus of individual indenter, i.e. Ē
k represents its value in the point x

k

for k ∈ Zd

N
.

13
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where ν is a Poisson’s ratio of real material taken the same for all points, Ei and νi are Young’s modulus
and Poisson’s ratio resp. for a material of indenter.

2.1.3 Data from input file

This section shows the number of discretization points N , size of periodic unit cell Y and discretization
step h := ( Y1

N1

, Y2

N2

) that can be adjusted leading to recalculation of the size of PUC, Y . Moreover, the
read values of E can be ploted.

2.1.4 Creation of input file

This section is operated by button ’Make input file’ producing an input file named ’Name of input file’
that is used in the tab ’FFT homogenization’4.

The indentation process can produce some defected values of Young’s modulus; since it is recognized
by user, those Young’s modulus are set up to some negative value. Hence, there are some possibilities
to deal with those non-physical negative values stated in choose option ’Substitution of defected values
with’:

• ’none’ - this option leaves the negative values and write it into the input file; this option is especially
used when the user wants to recognized those defected values in input file,

• ’local average’ - it substitutes the negative value with a value calculate as a mean of the closest
adjacent values. When the negative value occurs at the margin the periodicity assumption is
utilized.

• ’global average’ - the negative values are substituted with the mean of all positive Young’s modulus.

2.2 FFT homogenization

Figure 7: ’FFT Homogenization’

This section describes tab FFT homogenization as is shown in Fig. 7. The tab is operated with a
button ’Calculate’ proceeding a Linear elasticity homogenization using FFT as is described in Section 1.1.

First, it reads the input file named ’Input file’ where the size of PUC Y and material parameters
E,ν ∈ RN are stored. Then bulk and shear modulus K,G ∈ RN are calculated from the components of
E and ν as

K
k =

E
k

3(1− 2νk)
(2.2)

G
k =

E
k

2(1 + νk)
(2.3)

4The name of input file ’Input file’ in the tab ’FFT homogenization’ is filled up with the value ’Name of input file’.

14
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for k ∈ Zd
N
.

Then the FFT-based homogenization is proceeded as it is described in Sec. 1.1. The linear system
(1.30) is then solved with the maximal number of iterations stated in ’Maximal no. of iterations’ and
the required tolerance of convergence stated in ’Tolerance for convergence’.

The output files contains following variables

• Leff - homogenized matrix in Mandel’s notation

• resnorm - residual based norm calculated for unit loads, i.e. sequentially for ε0 = [1, 0, 0]; ε0 =
[0, 1, 0] and ε0 = [0, 0, 1]

• kit - number of iteration of Conjugate gradients reached for unit loads

• maxit - maximal number of iteration for Conjugate gradients

• tol - required tolerance for residual based norm to reach a convergence of Conjugate gradients

• time - time in seconds to calculate Conjugate gradients for a particular unit load

• L - the object from R3×3×N1×N2 storing the stiffness coefficients

• strain - the object from R3×3×N1×N2 storing the stiffness coefficients

2.3 FFTH postprocessing

In this section, we describe the postprocessing of output file of FFT homogenization. It is operated with
button ’update’ that reads the file ’Name of output file’ and primarily shows the effective stiffness in
group ’Outputs’. Next, it shows the number of iterations necessary to reach the required tolerance of
residual norm. Both quantities are in sum of three as the effective stiffness is calculated for three unit
loads.

Finally, the section ’Drawing of local fields’ enable to show the local strain and stress fields for
arbitrary macroscopic strain.

Figure 8: ’FFTH postprocessing’

2.4 Analytical homogenization

In this section, we describe the tab ’Analytical Homogenization’ that homogenize the material in a
fully different approach than FFT homogenization. It is based on a assumption that the material is
composed of some finite phases each having the phase volume ratio and material parameters, in our case
isotropic. After pushing the button ’Import and calculate’ those quantities are read and various analytical

15
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homogenization proceeded. The Voight-Reuss homogenization makes the bounds for the real effective
parameters that are improved by the Hashin-Shtrikman-Walpole method. Finally Self Consistent method
and Mori-Tanaka calculate the estimates of effective parameters. The second method requires to identify
the matrix phase, usually the phase with maximal phase ratio. It is provided by field ’No. of matrix
phase’.

Figure 9: ’Analytical Homogenization’
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2.5 Visco-elastic FFTH

Figure 10: ’Visco-elasticity FFTH’

This section describes tab ’Visco-elasticity FFTH’, see Fig. 7, dealing with homogenization of visco-
elastic material.

2.5.1 Import and identification of parameters

This section is operated with button ’Import’ that reads the data from ’Indentation file’, identifies the
visco-elastic parameters and write it into the file defined as ’Input file for homogenization’. Moreover, it
directly set the recommended values for the section ’Calculation’.

The identification of visco-elastic parameters follows the description from Sec. 1.2.1. Briefly, for
each indentation point from regular grid, the nanoindentation force is prescribed as in Fig. 2 and the
indentation depth is measured as in Fig. 3. The part of indentation depth that corresponds to holding
phase in indentation force is fitted with Kelvin-Voight-Maxwell model, cf. Fig. 1, emerging the visco-
elastic parameters.

2.5.2 Calculation

This section is operated with two buttons ’Update and set the parameters to recommended values’ and
’Calculate’. The first read the data from the file stated in ’Input file for homogenization’ and set the
parameters to recommended values. The number of time steps in holding phase nH is predefined in the
source code, however it can be adjusted and dependent quantities are recalculated. Next, the quantity
’Duration of holding phase’, tH , can also be set up and directly influence the quantity ’Time-step’, ∆t,
as

∆t =
tH

nH
.

’Duration of loading phase’, tinitL , can be set up, however it is round-off in order to be multiplier of
time-step ∆t, i.e.

tL = ∆t · round
(

tinitL

∆t

)

.
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Finally, two quantities that control the solution of linear system by Conjugate gradients can be
regulated. First, ’Tolerance for CG convergence’, εCG, controls the 2-norm of residual as in Eq. (1.32).
Next, ’Maximal no. of CG iterations’ regulate CG iterations especially in case of not convergence.

Then, the homogenization itself follows the theory stated in Sec. 1.2.3. The duration loading and
holding phase defines a macroscopic shear stress load with maximal value equal to one. Than the strain
and especially macroscopic one is calculated using visco-elastic material law with parameters identified
from nanoindentation for particular points from regular grid.
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