D32MPO - Mikromechanika a popis mikrostruktury materiálů – přednáška 04

Principy nanomechanické analýzy heterogenních materiálů. Dekonvoluce a homogenizace.

prof. Ing. Jiří Němeček, Ph.D., DSc.

ČVUT Praha, Fakulta stavební

Tvorba výukových materiálů byla podpořena projektem OPVVV, Rozvoj výzkumně orientovaného studijního programu Fyzikální a materiálové inženýrství, CZ.02.2.69/0.0/0.0/16_018/0002274 (2017-18)

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Introduction and motivation

- Principles of nanomechanical analysis on heterogeneous materials. Nanoindentation, SEM, image analysis.
- Nanomechanical analysis of distinct material phases applied to cement paste, Alkali-activated Fly ash, Gypsum
- Up-scaling phase properties to upper composite level

Introduction

Structural materials are characterized with

- Heterogeneous composition including porosity at different scales nm-mm
- Multi-scale models must be developed.
- Basic tasks include: Scale separation, finding characteristic dimensions (*number of phases, morphology, volumetric content at individual levels*) and Mechanical characterization at each scale.

Bottom-up approach

- Detect and characterize **low-level** material properties.

i.e. Intrinsic (constant) properties of basic building blocks (phases)

 Use up-scaling to predict upper-level (macro/full-scale) properties knowing volume fractions of phases, microstructural configuration, phase interactions

Then, virtual experiments are

-possible (changing volume fraction of existing phases, adding new phases) -less expensive and more predictive than classical macroscopic experiments (onemixture test)

and their resolution

Microstructural investigations

•Optical microscopy: basic morphometrics >>1 um

•SEM:

SE detector: high resolution on morhology in 2D (100-10.000x) BSE detector: material constrast EDX: elemental analysis ~**5 um**

•AFM – surface 3D topology (~1nm)

•Micro-CT: 3D imaging ~1um.

•MIP porosimetry, pores nm-um

Nanomechanical analysis

•Nanoindentation spacial resolution ~1 um

•AFM (very local ~1nm)

Practical limits:

surface roughness

- unpolished sample ~1-10 um
- polished sample 10-100 nm

Positioning system – precision

mechanical ~1um

piezopositioning ~1nm

Nanoindentation

- pointwise estimates of local mechanical properties
- measurement is performed from the surface but affects volume under the

indenter (practically 0.1-1 um³)

Available information: Micromechanical characterization (nanoindentation on phases below 1 um) Grid nanoindentation, phase deconvolution

Phase deconvolution in multi-phase systems

Image analysis

- Dependent on
- -image quality
- -pixel luminosity
- -segmentation (thresholds/local minima/ deconvolution of histograms)

Direct phase deconvolution from mechanical tests -Nanoindentation

Pointed indentation (HD C-S-H) loois Cavera Video Windows Help #+# X+-35.00 un Y+ 26.9 H DX-7000 at 1 DY = 54.00 yrs D = 88.41 µm Theta = 37.65 de Kive 100a 💌 😼 Det WD Exp SE 9.3 1 Acc.V Spot Magn 30.0 kV 5.0 5054x 8 Pa ALIT_04_#16_02

E=38.6± 2.57 GPa

4 µm

x 1.78 µn - V: 27.17 µn

5 µm

Average properties

Grid indentation –large indents 100mN

"Physical homogenization"

Geopolymers

Deconvolution

- •All indents taken into account
- Assessment of E modulus from unloading curve (Standard Oliver-Pharr procedure) for individual indents
- •Material property can be plotted in the form of property histogram
- •Statistical deconvolution of material phases can be applied

Ill-posed problem!

Nanoindentation on cement paste

Main phases at micro-scale •C-S-H gels (low and high density) •Portlandite Ca(OH)₂ •Residual clinker •Capillary porosity

Parameters of nanoindentation

•Representative material area (*RVE 200x200 um*)
•Indents spacing 10 um
•Individual indents depth *h=100-300 nm*

h<< characteristic size of heterogeneities

(Portladite zones, clinker, .. um range)
 h>> nanoporosity (30vol.% <100nm) (included in intrinsic phase properties)

h<< Capillary porosity (not included in results)

20×20=400 indents 10 μm spacing **RVE size ~200 μm**

Statistical grid nanoindentation on cement paste

•Deconvolution of phases from grid results in RVE

•Assumption of *n*-phases (Gaussian distributions)

$$P(x) = \sum_{j=1}^{n} \frac{p_j}{\sqrt{2\pi s_j^2}} exp\left[-\frac{(x-\mu_j)^2}{2\sigma_j^2}\right]$$

•Minimization of differences between theoretical and experimental probability density

$$\min \sum_{i=1}^{N^{bins}} [(P_i^{exp} - C(x_i)) P_i^{exp}]^2$$

Reduced modulus E_r (GPa) and frequency of occurance (%) Phase This study¹ Literature [10]² Literature [22] ³ $7.45 \pm 0.98 (1.05 \%)$ A. Low stiffness 8.1 ± 1.7 (6 %) n/a $21.7 \pm 2.2 \ (67 \ \%)$ B. LD C-S-H $20.09 \pm 3.85 \ (63.17 \ \%)$ $18.2 \pm 4.19 \ (51 \ \%)$ $33.93 \pm 2.98 \ (26.34 \ \%)$ C. HD C-S-H $29.4 \pm 2.4 \ (33 \ \%)$ $29.1 \pm 4.07 \ (27 \ \%)$ 0.0 $43.88 \pm 2.15 \ (4.61 \ \%)$ 0 D. Portlandite $40.3 \pm 4.03 \ (11 \ \%)$ n/an/a (4.83 %) E. Non-hydrated n/an/a

Image analysis (SEM) on cement paste

green=C-S-H; pink=Portlandite; blue=porosity; red=clinker

Local minima approach

Segmentation to only 4 phases (Not sufficient contrast to distinguish between low/high-density C-S-H)

fraction	s.d.
0.017	0.015
0.862	0.024
0.078	0.013
0.044	0.020
	fraction 0.017 0.862 0.078 0.044

Deconvolution approach

Phase	fraction	s.d.
Porosity	0.032	0.02
C-S-H	0.805	0.035
Portlandite	0.101	0.032
Clinker	0.062	0.028

IA insufficiencies

Cannot sense B/C
Smooth transitions between phases – no local minima

	Nanoindentation		Image	
Phase	E (GPa)	f_NI	f_IA (dec)	Error=(f_IA-f_NI)/f_AI
A-Low stiffness phase	7.45	0.011	0.032	0.66
B=low density C-S-H	20.09 0.632		0.805	-0.11
C=high density C-S-H	33.93	0.263		
D=Portlandite	43.88	0.046	0.101	0.54
E-Clinker	121	0.048	0.062	0.23

IA overestimates low density regions (pores)
IA can not sense two types of C-S-H
IA overestimates Portlandite and clinker volumes

(due to smooth color transition)

Nanomechanical analysis of AAFA

Alkali-activated fly ash (AAFA)

Basic reaction product is an amorphous alumino-silicate gel (N-A-S-H gel) and/or C-S-H gel forming in the presence of calcium and low alkalinity activator

High degree of hetegogeneity

Nanoindentation

- •CSM nanohardness tester
- •Several matrices of 10x10=100 imprints
- •Mutual indents' spacing 10-50 um
- •Total 700 800 imprints per sample
- Load controlled test
- •Trapezoidal loading diagram
- •Max. load 2 mN
- •Loading/holding/unloading 30/30/30s

- A. light luminous points = iron rich particles (*Fe-Mn* oxides) B. light grov compact spheres = aluming silica rich glass part
- B. light grey compact spheres = alumina-silica rich glass particles
- C. porous fly ash particles and non-activated slags
- D. N-A-S-H gel

the second peak comes from partly activated slag particles (mix of gel and rest of a slag particle)
different reaction kinetics between ambient and heat-cured sample.

Nanomechanical analysis on gypsum

Samples:

•low-porosity purified α -hemihydrate (CaSO₄.1/2H₂O)

Used for dental purposes

Microstructure:

 Interlocking crystals+porosity (total 19%) •The major porosity: in nano-range 0–300 nm (0–100 nm 7%, 100–300 nm 4%, 300–1000 nm 1%) •virtually no pores appeared between 1-100 µm (<0.5%) 15×12=180 indents

Results:

polycrystalline nature

apparent isotropic moduli associated with the

indentation volume 1.5³ µm³ were assessed

three significant crystallographic orientations (monoclinic system)

15 µm spacing

Nanomechanical analysis of Al alloy

Phase	E (GPa)	Poisson's ratio (-)	Volume fraction
Al-rich zone	61.882	0.35	0.637681
Ca/Ti-rich zone	87.395	0.35	0.362319

Up-scaling low level properties to upper level

Structural materials (concrete, gypsum, plastics, wood, ...) are characterized by

- Multiscale heterogeneity (different chemical and mechanical phases)
- Phase separation process (depends on scale nm-mm)

Voigt bound = strains constant in composite (rule of mixtures for stiffness, parallel configuration) $E_c = fE_f + (1 - f)E_m$

Reuss bound = stresses constant in composite (rule of mixtures for compliance,

 $E_c = \left(rac{f}{E_f} + rac{1-f}{E_m}
ight)^{-1}.$ $f = rac{V_f}{V_f + V_m}$

serial configuration)

Hashin-Shtrikman Bounds

1. Analytical schemes

Micromechanical averaging

$$\begin{split} \boldsymbol{\Sigma} &= \langle \boldsymbol{\sigma} \rangle = \frac{1}{V} \int_{V} \mathbf{c}(\mathbf{x}) : \mathbf{A}(\mathbf{x}) : \boldsymbol{E} dV = \boldsymbol{C}^{eff} : \boldsymbol{E}, \\ \boldsymbol{E} &= \langle \boldsymbol{\varepsilon} \rangle = \frac{1}{V} \int_{V} \mathbf{s}(\mathbf{x}) : \mathbf{B}(\mathbf{x}) : \boldsymbol{\Sigma} dV = \boldsymbol{S}^{eff} : \boldsymbol{\Sigma}. \\ \mathbf{For r-phases:} \\ \boldsymbol{C}^{eff} &= \sum_{r} f_{r} \mathbf{c}_{r} : \mathbf{A}_{r} \\ \boldsymbol{S}^{eff} &= \sum_{r} f_{r} \mathbf{s}_{r} : \mathbf{B}_{r} \\ \mathbf{r}^{-phase medium:} \\ \mathbf{f}_{r} \dots \text{ volume fraction} \\ \mathbf{c}_{r} \mathbf{s}_{r} \dots \text{ local stiffness/compliance tensors} \\ \mathbf{A}/\mathbf{B} \quad \text{localization tensors} \end{split}$$

Eshelby's estimate

 $\mathbf{A}_{r}^{est} = [\mathbf{I} + \mathbf{S}_{r}^{Esh} : (\mathbf{C}_{0}^{-1} : \mathbf{c}_{r} - \mathbf{I})]_{\mathbf{I}}^{-1} : \left\langle [\mathbf{I} + \mathbf{S}_{r}^{Esh} : (\mathbf{C}_{0}^{-1} : \mathbf{c}_{r} - \mathbf{I})]^{-1} \right\rangle^{-1}$

Based on Eshelby's solution of an ellipsoidal inclusion in an infinite body
Assumes prevailing matrix reinforced with non-continuous spherical inclusions
Uses phase volume fractions and stiffnesses (here taken from deconvolution)
Produces effective (homogenized) composite properties

Reference medium == 0-th phase

$$\alpha_0 = \frac{3k_0}{3k_0 + 4\mu_0}, \beta_0 = \frac{6k_0 + 12\mu_0}{15k_0 + 20\mu_0}$$

Bulk and shear effective moduli for r-phase composite:

Analytical homogenization (Mori-Tanaka)

Level 1

	Phase	$E_r(GPa)$	ν	f_r
Input	LD C-S-H	20.09	0.2	0.706
	HD C-S-H	33.93	0.2	0.294
Output	Homogenized C-S-H	23.363	0.2	1

Level 2

	Phase	$E_r(GPa)$	ν	f_r
Input	C-S-H	23.363	0.2	0.8951
	Low stiffness	7.45	0.2	0.0105
	CH	43.88	0.3	0.0461
	Clinker	113	0.3	0.0483
Output	Cement paste	25.343	0.21	1

Average $\langle \mathbf{\epsilon} \rangle := \frac{1}{|\Omega|} \int_{\Omega} \mathbf{\epsilon}(\mathbf{x}) d\mathbf{x} = E$

Governing differential equation: $\sigma(\mathbf{x}) = L(\mathbf{x}) : \epsilon(\mathbf{x}) \quad div\sigma(\mathbf{x}) = \mathbf{0} \quad \mathbf{x} \in \Omega$

Effective stiffness tensor $\langle \boldsymbol{\sigma} \rangle = L_{eff} \langle \boldsymbol{\epsilon} \rangle$

Decomposition of local strain to homogeneous strain and polarization part)

$$\mathbf{E}(\mathbf{x}) = E - \int_{\Omega} \Gamma^{0}(\mathbf{x} - \mathbf{y}) : (\mathbf{L}(\mathbf{y}) - \mathbf{L}^{0}) : \mathbf{E}(\mathbf{y}) d\mathbf{y}$$

(periodic Lippmann-Schwinger integral equation)

Green's operator

2

Polarization stress

Integral kernel (Green's operator) found in the Fourier space

Discretization (by trigonometric collocation method) leads to --->nonsymmetric linear system of equations (CG method)

Comparison of the results

Stiffness matrix for **Plane strain** conditions (isotropic material)

Comparison of analytical and FFT scheme

stiffness error =
$$\delta = \sqrt{\frac{\left(\mathbf{L}_{eff}^{FFT} - \mathbf{L}_{eff}^{A}\right):\left(\mathbf{L}_{eff}^{FFT} - \mathbf{L}_{eff}^{A}\right)}{\left(\mathbf{L}_{eff}^{FFT}:\mathbf{L}_{eff}^{FFT}\right)}}$$

_	Results from nanoindentation and deconvolution					
	_		Phase	E (GPa)	Poisson's ratio (-)	Volume fraction
		INPUT	Low stiffness	7.45	0.2	0.0105
CEMENT	(%) 7-	B Theoretical PDF Experimental PDF C D D E Reduced modulus Er (GPa)	Low density C-S-H	20.09	0.2	0.6317
	ency density		High density C-S-H	33.93	0.2	0.2634
	Leedne Leedne U		Ca(OH) ₂	43.88	0.3	0.0461
			clinker	130	0.3	0.0483
		OUTPUT	M-T homogenized value	25.3308	0.2067	1.0

		Phase	E (GPa)	Poisson's ratio (-)	Volume fraction
Σ		Low stiffness	19.357	0.2	0.043750
DSc	7.0 7	Dominant	37.234	0.2	0.712500
Ц	2.0 phase 0.0 20 40 60 80 100 Elastic modulus (GPa)	High stiffness	56.277	0.2	0.243750
U	OUTPUT	M-T homogenized value	40.000	0.2	1.0
AS	8.0 7.0 Experimental PDF	Phase	E (GPa)	Poisson's ratio (-)	Volume fraction
OR	600 9 40 20 40 20 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40	Al-rich zone	61.882	0.35	0.637681
ГЪ	E 1.0 4.0 60 80 100 120 140 Elastic modulus (GPa)	Ca/Ti-rich zone	87.395	0.35	0.362319
4	OUTPUT	M-T homogenized value	70.083	0.35	1.0

_

Numerical results

$$\mathbf{L}_{eff}^{A} = \begin{bmatrix} 28.145 & 7.036 & 0 \\ 7.036 & 28.145 & 0 \\ 0 & 0 & 21.109 \end{bmatrix} \quad \mathbf{L}_{eff}^{FTT} = \begin{bmatrix} 26.177 & 6.778 & 0.068 \\ 6.778 & 26.224 & 0.014 \\ 0.068 & 0.014 & 19.818 \end{bmatrix}$$

$$cement \delta = 0.071045 \quad \text{Error } 7.1\%$$

$$\mathbf{L}_{eff}^{A} = \begin{bmatrix} 44.444 & 11.111 & 0 \\ 11.111 & 44.444 & 0 \\ 0 & 0 & 33.333 \end{bmatrix} \quad \mathbf{L}_{eff}^{FFT} = \begin{bmatrix} 40.995 & 10.593 & -0.349 \\ 10.593 & 41.726 & -0.024 \\ -0.349 & -0.024 & 30.909 \end{bmatrix}$$

$$gypsum \delta = 0.075138 \quad \text{Error } 7.5\%$$

$$\mathbf{L}_{eff}^{A} = \begin{bmatrix} 112.479 & 60.566 & 0 \\ 60.566 & 112.479 & 0 \\ 0 & 0 & 51.913 \end{bmatrix} \quad \mathbf{L}_{eff}^{FFT} = \begin{bmatrix} 117.130 & 62.741 & -0.163 \\ 62.741 & 117.106 & -0.143 \\ -0.163 & -0.143 & 54.313 \end{bmatrix}$$

$$A^{I-alloy} \delta = 0.0393058 \quad \text{Error } 3.9\%$$

(Stiffness matrices in Mandel's notation)

CEMENT

UHPC

Cement paste

Analyti

Data received from statistical deconvolution and homogenized values on cement paste.

	Deconvoluted phase	E (GPa)	Poisson's ratio	Volume	
cal	Low stiffness phase (A) Low density C–S–H (B) High density C–S–H (C) Portlandite (D) Clinker (E)	7.45 20.09 33.93 43.88 121.0 ^a	0.2 0.2 0.2 0.3 0.3	0.011 0.632 0.263 0.046 0.048	from NI
	Homogenization C–S–H level (B + C) by M–T C–S–H level (B + C) by SCS Cement paste level (B + C) + A + D + E by M–T Cement paste level (B + C) + A + D + E by SCS	23.36 23.41 25.39 25.44	0.2 0.2 0.207 0.208	1.0 1.0	

M-T stands for the Mori-Tanaka scheme; SCS stands for the self-consistent scheme.

^a Note: Clinker value was adjusted to 121 GPa according to [7].

$$\mathbf{L}_{eff}^{A} = \frac{E_{eff}}{(1+v_{eff})(1-2v_{eff})} \begin{bmatrix} 1-v_{eff} & \nu & 0 \\ \nu & 1-v_{eff} & 0 \\ 0 & 0 & 1-2v_{eff} \end{bmatrix} = \begin{bmatrix} k+\frac{4}{3}\mu & k-\frac{2}{3}\mu & 0 \\ k-\frac{2}{3}\mu & k+\frac{4}{3}\mu & 0 \\ 0 & 0 & 2\mu \end{bmatrix} \quad \text{cement} : L_{eff}^{A} = \begin{bmatrix} 28.44 & 7.43 & 0 \\ 7.43 & 28.44 & 0 \\ 0 & 0 & 21.02 \end{bmatrix}$$

FFT homogenization from NI
$$L_{eff}^{FFT} = \begin{bmatrix} 26.177 & 6.778 & 0.068 \\ 6.778 & 26.224 & 0.014 \\ 0.068 & 0.014 & 19.818 \end{bmatrix}$$

Comparison

$$\delta = \sqrt{\frac{\left(L_{\textit{eff}}^{\textit{FFT}} - L_{\textit{eff}}^{\textit{A}}\right) :: \left(L_{\textit{eff}}^{\textit{FFT}} - L_{\textit{eff}}^{\textit{A}}\right)}{\left(L_{\textit{eff}}^{\textit{FFT}} :: L_{\textit{eff}}^{\textit{FFT}}\right)}}$$

 $^{\text{cement}}\delta = 0.08$

Gypsum

Analytical

Data received from statistical deconvolution to the three phases and homogenized values on gypsum.

E (GPa)	Poisson's ratio	Volume fraction
28.36	0.32	0.663
43.46	0.32	0.310
59.89	0.32	0.027
32.96	0.32	1.0
33.02	0.32	1.0
	E (GPa) 28.36 43.46 59.89 32.96 33.02	E (GPa) Poisson's ratio 28.36 0.32 43.46 0.32 59.89 0.32 32.96 0.32 33.02 0.32

Note: M-T stands for the Mori-Tanaka scheme; SCS stands for the self-consistent scheme.

Gypsum : 3 phase fit :
$$L_{eff}^{A} = \begin{bmatrix} 47.25 & 22.24 & 0 \\ 22.24 & 47.25 & 0 \\ 0 & 0 & 25.02 \end{bmatrix}$$

1phase fit : $L_{eff}^{A} = \begin{bmatrix} 48.51 & 22.84 & 0 \\ 22.84 & 48.51 & 0 \\ 0 & 0 & 25.69 \end{bmatrix}$
 $L_{eff}^{FFT} = \begin{bmatrix} 45.302 & 21.185 & 0.101 \\ 21.185 & 45.497 & -0.008 \\ 0.101 & -0.008 & 24.396 \end{bmatrix}$

FFT homogenization from NI

Comparison

 $^{\rm gypsum}\delta = 0.07.$