Books || Preprints || Articles in journals || Articles in collections || Theses

Books

[2] M. Šejnoha and J. Zeman, Micromechanics in practice, WIT Press, Southampton, UK, 2013. [ bib | http ]
[1] M. Jirásek and J Zeman, Přetváření a porušování materiálů: Dotvarování, plasticita, lom a poškození, České vysoké učení technické v Praze, 2006. [ bib | http ]

Preprints

[4] M. Tyburec, M. Doškář, M. Somr, M. Kružík, and J. Zeman, Modular-topology optimization for additive manufacturing of reusable mechanisms, submitted for publication, 2023. [ bib | http ]
[3] J. Schmidt, A. Zemanová, and J. Zeman, Simulating progressive failure in laminated glass beams with a layer-wise randomized phase-field solver, Engineering Structures (2024). [ bib | arXiv ]
[2] L. Gaynutdinova, M. Ladecký, I. Pultarová, M. Vlasák, and J. Zeman, Preconditioned discontinuous Galerkin method and convection-diffusion-reaction problems with guaranteed bounds to resulting spectra, Numerical Linear Algebra with Applications (2024), e2549, Early View. [ bib | DOI | arXiv ]
[1] L. Gaynutdinova, M. Ladecký, A. Nekvinda, I. Pultarová, and J. Zeman, Efficient numerical method for reliable upper and lower bounds on homogenized parameters, submitted for publication, 2022. [ bib | arXiv ]

Articles in journals

[84] B. Werner, O. Rokoš, and J. Zeman, Extended quasicontinuum methodology for highly heterogeneous discrete systems, International Journal for Numerical Methods in Engineering 125 (2024), no. 6, e7415. [ bib | DOI | arXiv ]
[83] M. Doškář, M. Somr, R. Hlůžek, J. Havelka, J. Novák, and J. Zeman, Wang tiles enable combinatorial design and robot-assisted manufacturing of modular mechanical metamaterials, Extreme Mechanics Letters 64 (2023), 102087. [ bib | DOI | arXiv ]
[82] L. Gaynutdinova, O. Rokoš, J. Havelka, I. Pultarová, and J. Zeman, Bayesian approach to micromechanical parameter identification using Integrated Digital Image Correlation, International Journal of Solids and Structures 280 (2023), 112388. [ bib | DOI | arXiv ]
[81] P. Hála, A. Zemanová, J. Zeman, and M. Šejnoha, Numerical study on failure of laminated glass subjected to low-velocity impact, Glass Structures & Engineering 8 (2023), no. 1, 99--117. [ bib | DOI ]
[80] M. Tyburec and J. Zeman, Bounded Wang tilings with integer programming and graph-based heuristics, Scientific Reports 13 (2023), 4865. [ bib | DOI | arXiv ]
[79] M. Ladecký, R. J. Leute, A. Falsafi, I. Pultarová, L. Pastewka, T. Junge, and J. Zeman, An optimal preconditioned FFT-accelerated finite element solver for homogenization, Applied Mathematics and Computation 446 (2023), 127835. [ bib | DOI | arXiv ]
[78] M. Jílek, K. Stránská, M. Somr, M. Kulich, J. Zeman, and L. Přeučil, Self-stabilizing self-assembly, IEEE Robotics and Automation Letters 7 (2022), no. 4, 9763--9769. [ bib | DOI | arXiv ]
[77] M. Tyburec, M. Doškář, J. Zeman, and M. Kružík, Modular-topology optimization of structures and mechanisms with free material design and clustering, Computer Methods in Applied Mechanics and Engineering 395 (2022), 114977. [ bib | DOI | arXiv ]
[76] R. J. Leute, M. Ladecký, A. Falsafi, I. Jödicke, I. Pultarová, J. Zeman, T. Junge, and L. Pastewka, Elimination of ringing artifacts by finite-element projection in FFT-based homogenization, Journal of Computational Physics 453 (2022), 110931. [ bib | DOI | arXiv ]
[75] M. Jílek, M. Somr, M. Kulich, J. Zeman, and L. Přeučil, Towards a passive self-assembling macroscale multi-robot system, IEEE Robotics and Automation Letters 6 (2021), no. 4, 7293--7300. [ bib | DOI | .pdf ]
[74] M. Doškář, J. Zeman, P. Krysl, and J. Novák, Microstructure-informed reduced modes synthesized with Wang tiles and the Generalized Finite Element Method, Computational Mechanics 68 (2021), 233--253. [ bib | DOI | arXiv ]
[73] M. Tyburec, J. Zeman, M. Kružík, and D. Henrion, Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy, Structural and Multidisciplinary Optimization 64 (2021), 1963--1981. [ bib | DOI | arXiv ]
[72] M. Tyburec, J. Zeman, M. Doškář, M. Kružík, and M. Lepš, Modular-topology optimization with Wang tilings: an application to truss structures, Structural and Multidisciplinary Optimization 63 (2021), 1099--1117. [ bib | DOI | arXiv ]
[71] T. Janda, J. Schmidt, P. Hála, P. Konrád, A. Zemanová, R. Sovják, J. Zeman, and M. Šejnoha, Reduced order models of elastic glass plate under low velocity impact, Computers and Structures 244 (2021), 106430. [ bib | DOI | http ]
[70] M. Ladecký, I. Pultarová, and J. Zeman, Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method, Applications of Mathematics 66 (2021), no. 1, 21--42. [ bib | DOI | arXiv ]
[69] J. Schmidt, A. Zemanová, J. Zeman, and M. Šejnoha, Phase-field fracture modelling of thin monolithic and laminated glass plates under quasi-static bending, Materials 13 (2020), no. 22, 5153. [ bib | DOI | arXiv ]
[68] M. Doškář, J. Zeman, D. Rypl, and J. Novák, Level-set based design of Wang tiles for modelling complex microstructures, Computer-Aided Design 123 (2020), 102827. [ bib | DOI | arXiv ]
[67] O. Rokoš, J. Zeman, M. Doškář, and P. Krysl, Reduced integration schemes in micromorphic computational homogenization of elastomeric mechanical metamaterials, Advanced Modeling and Simulation in Engineering Sciences 7 (2020), Article number: 19. [ bib | DOI | arXiv ]
[66] David Melching, Riccardo Scala, and Jan Zeman, Damage model for plastic materials at finite strains, Zeitschrift für Angewandte Mathematik und Mechanik 99 (2019), no. 9, e201800032. [ bib | DOI | http ]
[65] M. Tyburec, J. Zeman, J. Novák, M. Lepš, T. Plachý, and R. Poul, Designing modular 3D printed reinforcement of wound composite hollow beams with semidefinite programming, Materials & Design 183 (2019), 108131. [ bib | DOI | arXiv ]
[64] A. Zemanová, J. Zeman, T. Janda, and M. Šejnoha, Layer-wise numerical model for laminated glass plates with viscoelastic interlayer, Structural Engineering and Mechanics 65 (2018), no. 4, 369--380. [ bib | DOI ]
[63] M. Doškář, J. Zeman, D. Jarušková, and J. Novák, Wang tiling aided statistical determination of the Representative Volume Element size of random heterogeneous materials, European Journal of Mechanics - A/Solids 70 (2018), 280--295. [ bib | DOI | arXiv ]
[62] V. Nežerka, M. Somr, T. Janda, J. Vorel, M. Doškŕř, J. Antoš, J. Zeman, and J. Novák, A jigsaw puzzle metamaterial concept, Composite Structures 202 (2018), 1275--1279. [ bib | DOI | arXiv ]
[61] A. Zemanová, J. Zeman, T. Janda, J. Schmidt, and M. Šejnoha, On modal analysis of laminated glass: Usability of simplified methods and enhanced effective thickness, Composites Part B: Engineering 151 (2018), 92--105. [ bib | DOI | arXiv ]
[60] F. Kolařík, B. Patzák, and J. Zeman, Computational homogenization of fresh concrete flow around reinforcing bars, Computers & Structures 207 (2018), 37--49. [ bib | DOI | arXiv ]
[59] J. Zeman, T.W.J. de Geus, J. Vondřejc, R.H.J. Peerlings, and M.G.D. Geers, A finite element perspective on nonlinear FFT-based micromechanical simulations, International Journal for Numerical Methods in Engineering 111 (2017), no. 10, 903--926. [ bib | DOI | arXiv ]
[58] V. Nežerka, J. Zeman, and J. Nemeček, Micromechanics-based simulations of compressive and tensile testing on lime-based mortars, Mechanics of Materials 105 (2017), 49--60. [ bib | DOI | arXiv ]
[57] T.W.J. de Geus, J. Vondřejc, J. Zeman, R.H.J. Peerlings, and M.G.D. Geers, Finite strain FFT-based non-linear solvers made simple, Computer Methods in Applied Mechanics and Engineering 318 (2017), 412--430. [ bib | DOI | arXiv ]
[56] A. Zemanová, J. Zeman, and M. Šejnoha, Comparison of viscoelastic finite element models for laminated glass beams, International Journal of Mechanical Sciences 131--132 (2017), 380--395. [ bib | DOI | arXiv ]
[55] O. Rokoš, J. Zeman, and M. Jirásek, Localization analysis of an energy-based fourth-order gradient plasticity model, European Journal of Mechanics - A/Solids 55 (2016), 256--277. [ bib | DOI | arXiv ]
[54] V. Nežerka, J. Antoš, J. Litoš, P. Tesárek, and J. Zeman, An integrated experimental-numerical study of the performance of lime-based mortars in masonry piers under eccentric loading, Construction and Building Materials 114 (2016), 913--924. [ bib | DOI | arXiv ]
[53] N. Mishra, J. Vondřejc, and J. Zeman, A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media, Journal of Computational Physics 321 (2016), 151--168. [ bib | DOI | arXiv ]
[52] S. Sysala, M. Čermák, T. Koudelka, J. Kruis, J. Zeman, and R. Blaheta, Subdifferential based implicit return mapping operators in computational plasticity, Zeitschrift für Angewandte Mathematik und Mechanik 96 (2016), no. 11, 1318--1338. [ bib | DOI | arXiv ]
[51] O. Rokoš, L.A.A. Beex, J. Zeman, and R.H.J. Peerlings, A variational formulation of dissipative quasicontinuum methods, International Journal of Solids and Structures 102--103 (2016), 214--229. [ bib | DOI | arXiv ]
[50] M. Kružík, U. Stefanelli, and J. Zeman, Existence results for incompressible magnetoelasticity, Discrete and Continuous Dynamical Systems - Series A 35 (2015), no. 6, 2615--2623. [ bib | DOI | arXiv ]
[49] A. Zemanová, J. Zeman, and M. Šejnoha, Finite element model based on refined plate theories for laminated glass units, Latin American Journal of Solids and Structures 15 (2015), no. 6, 1158--1180. [ bib | DOI | arXiv ]
[48] M. Jirásek and J. Zeman, Localization study of a regularized variational damage model, International Journal of Solids and Structures 69--70 (2015), 131--151. [ bib | DOI | arXiv ]
[47] J. Vondřejc, J. Zeman, and I. Marek, Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method, Computer Methods in Applied Mechanics and Engineering 297 (2015), 258--291. [ bib | DOI | arXiv ]
[46] L.A.A. Beex, O. Rokoš, J. Zeman, and S.P.A. Bordas, Higher-order quasicontinuum methods for elastic and dissipative lattice models: Uniaxial deformation and pure bending, GAMM-Mitteilungen 38 (2015), no. 2, 344--368. [ bib | DOI | http ]
[45] L. Svoboda, J. Novák, L. Kurilla, and J. Zeman, A framework for integrated design of algorithmic architectural forms, Advances in Engineering Software 72 (2014), 109--118. [ bib | DOI | arXiv ]
[44] J. Vondřejc, J. Zeman, and I. Marek, An FFT-based Galerkin method for homogenization of periodic media, Computers & Mathematics with Applications 68 (2014), no. 3, 157--173. [ bib | DOI | arXiv ]
[43] A. Zemanová, J. Zeman, and M. Šejnoha, Numerical model of elastic laminated glass beams under finite strain, Archives of Civil and Mechanical Engineering 14 (2014), no. 4, 734--744. [ bib | DOI | arXiv ]
[42] M. Doškař, J. Novák, and J. Zeman, Aperiodic compression and reconstruction of real-world material systems based on Wang tiles, Physical Review E 90 (2014), no. 6, 062118. [ bib | DOI | arXiv ]
[41] M. Jirásek, O. Rokoš, and J. Zeman, Localization analysis of variationally based gradient plasticity model, International Journal of Solids and Structures 50 (2013), 256--269. [ bib | DOI | arXiv ]
[40] J. Novák, A. Kučerová, and J. Zeman, Microstructural enrichment functions based on stochastic Wang tilings, Modelling and Simulation in Materials Science and Engineering 21 (2013), no. 2, 025014. [ bib | DOI | arXiv ]
[39] M. Beneš, R. Štefan, and J. Zeman, Analysis of coupled transport phenomena in concrete at elevated temperatures, Applied Mathematics and Computation 291 (2013), no. 13, 7262--7274. [ bib | DOI | arXiv ]
[38] J. Vorel, J. Zeman, and M. Šejnoha, Homogenization of plain weave composites with imperfect microstructure: Part II-Analysis of real-world materials, International Journal for Multiscale Computational Engineering 11 (2013), no. 5, 443--462. [ bib | DOI | arXiv ]
[37] J. Novák, L. Kaczmarczyk, P. Grassl, J. Zeman, and C. Pearce, A micromechanics-enhanced finite element formulation for modelling heterogeneous materials, Computer Methods in Applied Mechanics and Engineering 201--204 (2012), 53--64. [ bib | DOI | arXiv ]
[36] M. Beneš and J. Zeman, Some properties of strong solutions to nonlinear heat and moisture transport in multi-layer porous structures, Nonlinear Analysis: Real World Applications 13 (2012), no. 4, 1562--1580. [ bib | DOI | arXiv ]
[35] J. Novák, A. Kučerová, and J. Zeman, Compressing random microstructures via stochastic Wang tilings, Physical Review E 86 (2012), 040104. [ bib | DOI | arXiv ]
[34] J. Sýkora, J. Zeman, and M. Šejnoha, Selected topics in homogenization of transport processes in historical masonry structures, The Open Civil Engineering Journal 6 (2012), 148--159. [ bib | arXiv ]
[33] V. Nežerka and J. Zeman, A micromechanics-based model for stiffness and strength estimation of cocciopesto mortars, Acta Polytechnica 52 (2012), no. 6, 29--37. [ bib | DOI | arXiv ]
[32] Jan Stránský, J. Vorel, J. Zeman, and M. Šejnoha, Mori-Tanaka based estimates of effective thermal conductivity of various engineering materials, Micromachines 2 (2011), no. 2, 129--149. [ bib | DOI | arXiv ]
[31] J. Zeman, R.H.J. Peerlings, and M.G.D. Geers, Non-local energetics of random heterogeneous lattices, Journal of the Mechanics and Physics of Solids 59 (2011), no. 6, 1214--1230. [ bib | DOI | arXiv ]
[30] M. Lombardo, J. Zeman, M. Šejnoha, and G. Falsone, Stochastic modeling of chaotic masonry via mesostructural characterization, International Journal for Multiscale Computational Engineering 7 (2010), no. 2, 171--185. [ bib | DOI | arXiv ]
[29] A. Mielke, T. Roubíček, and J. Zeman, Complete damage in elastic and viscoelastic media and its energetics, Computer Methods in Applied Mechanics and Engineering 199 (2010), no. 21--22, 1242--1253. [ bib | DOI | .pdf ]
[28] M. Jirásek, J. Zeman, and J. Vondřejc, Softening gradient plasticity: Analytical study of localization under nonuniform stress, International Journal for Multiscale Computational Engineering 8 (2010), no. 1, 37--60. [ bib | DOI | arXiv ]
[27] R. Valenta, M. Šejnoha, and J. Zeman, Macroscopic constitutive law for mastic asphalt mixtures from multiscale modeling, International Journal for Multiscale Computational Engineering 8 (2010), no. 1, 131--149. [ bib | DOI | arXiv ]
[26] J. Zeman, J. Vondřejc, Jan Novák, and I. Marek, Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients, Journal of Computational Physics 229 (2010), no. 21, 8065--8071. [ bib | DOI | arXiv ]
[25] A. Kučerová, D. Brancherie, A. Ibrahimbegovic, J. Zeman, and Z. Bittnar, Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures. Part II: identification from tests under heterogeneous stress field, Engineering Computations 26 (2009), no. 1--2, 128--144. [ bib | DOI | arXiv ]
[24] P. Gruber, J. Zeman, J. Kruis, and M. Šejnoha, Homogenization of composites with interfacial debonding using duality-based solver and micromechanics, Computer Assisted Mechanics and Engineering Sciences 16 (2009), no. 1, 59--76. [ bib | arXiv | http ]
[23] M. Šejnoha and J. Zeman, Micromechanical modeling of imperfect textile composites, International Journal of Engineering Science 46 (2008), no. 6, 513--526. [ bib | DOI ]
[22] B. Tomková, M. Šejnoha, J. Novák, and J. Zeman, Evaluation of effective thermal conductivities of porous textile composites, International Journal for Multiscale Computational Engineering 6 (2008), no. 2, 153--167. [ bib | DOI | arXiv ]
[21] J. Šejnoha, M. Šejnoha, J. Zeman, J. Sýkora, and J. Vorel, A mesoscopic study on historic masonry, Structural Engineering & Mechanics 30 (2008), no. 1, 99--117. [ bib | DOI | arXiv ]
[20] J. Skoček, J. Zeman, and M. Šejnoha, Effective properties of textile composites: Application of the Mori-Tanaka method, Modelling and Simulation in Materials Science and Engineering 16 (2008), no. 8, 085002 (15pp). [ bib | DOI | arXiv ]
[19] J. Zeman, J. Novák, M. Šejnoha, and J. Šejnoha, Pragmatic multi-scale and multi-physics analysis of Charles Bridge in Prague, Engineering Structures 30 (2008), no. 11, 3365--3376. [ bib | DOI | http ]
[18] Z. Sharif-Khodaei and J. Zeman, Microstructure-based modeling of elastic functionally graded materials: One dimensional case, Journal of Mechanics of Materials and Structures 3 (2008), no. 9, 1773--1796. [ bib | DOI | arXiv ]
[17] A. Zemanová, J. Zeman, and M. Šejnoha, Simple numerical model of laminated glass beams, Acta Polytechnica 48 (2008), no. 6, 22--26. [ bib | DOI | arXiv ]
[16] M. Šejnoha, J. Šejnoha, M. Kalousková, and J. Zeman, Stochastic analysis of failure of earth structures, Probabilistic Engineering Mechanics 22 (2007), no. 2, 206--218. [ bib | DOI ]
[15] J. Zeman and M. Šejnoha, From random microstructures to representative volume elements, Modelling and Simulation in Materials Science and Engineering 15 (2007), no. 4, S325--S335. [ bib | DOI ]
[14] A. Kučerová, M. Lepš, and J. Zeman, Back analysis of microplane model parameters using soft computing methods, Computer Assisted Mechanics and Engineering Sciences 14 (2007), no. 2, 219--242. [ bib | arXiv | http ]
[13] J. Gajdošík, J. Zeman, and M. Šejnoha, Qualitative analysis of fiber composite microstructure: Influence of boundary conditions, Probabilistic Engineering Mechanics 21 (2006), no. 4, 317--329. [ bib | DOI ]
[12] J. Skoček, J. Zeman, and M. Šejnoha, On determination of periodic unit cell for plain weave fabric composites: Geometrical modeling of real world materials, Engineering Mechanics 13 (2006), no. 4, 249--260. [ bib | http ]
[11] M. Wierer, M. Šejnoha, and J. Zeman, Multiscale analysis of woven composites - Scale transition via macroelement, Building Research Journal 53 (2005), no. 2--3, 93--110. [ bib | .pdf ]
[10] J. Zeman and M. Šejnoha, Homogenization of balanced plain weave composites with imperfect microstructure. Part I. Theoretical formulation, International Journal of Solids and Structures 41 (2004), no. 21--22, 6549--6571. [ bib | DOI | http ]
[9] M. Šejnoha, R. Valenta, and J. Zeman, Nonlinear viscoelastic analysis of statistically homogeneous random composites, International Journal for Multiscale Computational Engineering 2 (2004), no. 4, 644--672. [ bib | DOI | http ]
[8] J. Zeman, R. Valenta, and M. Šejnoha, On adequacy of two-point averaging schemes for composites with nonlinear viscoelastic phases, Acta Polytechnica 44 (2004), no. 5--6, 200--209. [ bib | DOI ]
[7] O. Hrstka, A. Kučerová, M. Lepš, and J. Zeman, A competitive comparison of different types of evolutionary algorithms, Computers & Structures 81 (2003), no. 18--19, 1979--1990. [ bib | DOI | arXiv ]
[6] M. Audy, J. Krček, M. Šejnoha, and J. Zeman, Constant strain triangle element with embedded discontinutity based on Partition of Unity, Building Research Journal 51 (2003), no. 3, 172--185. [ bib | http ]
[5] M. Šejnoha and J. Zeman, Overall viscoelastic response of random fibrous composites with statistically quasi uniform distribution of reinforcements, Computer Methods in Applied Mechanics and Engineering 191 (2002), no. 44, 5027--5044. [ bib | DOI ]
[4] J. Zeman and M. Šejnoha, On determination of periodic unit cell for plain weave fabric composites, Engineering Mechanics 9 (2002), no. 1--2, 65--74. [ bib ]
[3] J. Zeman and M. Šejnoha, Numerical evaluation of effective elastic properties of graphite fiber tow impregnated by polymer matrix, Journal of the Mechanics and Physics of Solids 49 (2001), no. 1, 69--90. [ bib | DOI ]
[2] K. Matouš, M. Lepš, J. Zeman, and M. Šejnoha, Applying genetic algorithms to selected topics commonly encountered in engineering practice, Computer Methods in Applied Mechanics and Engineering 190 (2000), no. 13--14, 1629--1650. [ bib | DOI | .pdf ]
[1] M. Šejnoha, J. Zeman, and J. Šejnoha, Evaluation of effective thermoelastic properties of random fibrous composites, International Journal for Engineering Modelling 13 (2000), no. 3--4, 61--68. [ bib | .pdf ]

Articles in collections

[6] L. Gaynutdinova, M. Ladecký, I. Pultarová, and J. Zeman, Guaranteed lower bounds to effective stiffness, PAMM 23 (2023), no. 2, e202300098. [ bib | DOI ]
[5] T. Roubí}̌cek, M. Kruž\iḱ, J. Zeman, C. G. Panagiotopoulos, R. Vodička, and V. Mantič, Delamination and adhesive contacts, their mathematical modeling and numerical treatment, Mathematical Methods and Models in Composites (V. Mantič, ed.), Computational and Experimental Methods in Structures, vol. 13, World Scientific, second ed., 2023, pp. 497--578. [ bib | DOI | http ]
[4] K. Latka, M. Doškář, and J. Zeman, Microstructure reconstruction via artificial neural networks: A combination of causal and non-causal approach, NMM 2021 Nano & Macro Mechanics (P. Padevět, ed.), Acta Polytechnica CTU Proceedings, vol. 34, Czech Technical University in Prague, 2022, pp. 32--37. [ bib | DOI | arXiv ]
[3] T. Roubí}̌cek, M. Kruž\iḱ, and J. Zeman, Delamination and adhesive contact models and their mathematical analysis and numerical treatment, Mathematical Methods and Models in Composites (V. Mantič, ed.), Computational and Experimental Methods in Structures, vol. 5, World Scientific, 2013, pp. 349--400. [ bib | DOI | .pdf ]
[2] J. Vondřejc, J. Zeman, and I. Marek, Analysis of a Fast Fourier transform based method for modeling of heterogeneous materials, Large-Scale Scientific Computing (I. Lirkov, S. Margenov, and J. Wasniewski, eds.), Lecture Notes in Computer Science, vol. 7116, Springer, Berlin/Heidelberg, 2012, pp. 515--522. [ bib | DOI | arXiv ]
[1] J. Zeman and P. Gruber, Numerical approach to a rate-independent model of decohesion in laminated composites, Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 6--11, 2010 (J. Chleboun, P. Přikryl, K. Segeth, and J. Šístek, eds.), Institute of Mathematics AS CR, Prague, 2010, pp. 239--250. [ bib | DOI | http ]

Theses

[2] J. Zeman, Analysis of composite materials with random microstructure, Ph.D. thesis, Klokner Institute, Czech Technical University in Prague, 2003. [ bib | DOI ]
[1] J. Zeman, Analysis of mechanical properties of fiber-reinforced composites with random microstructure, Master's thesis, Czech Technical University in Prague, 2000. [ bib | http ]

This file was generated by bibtex2html 1.99.